Suppr超能文献

用于心电图信号建模的具有同步模型选择的序贯马尔可夫链蒙特卡罗滤波器

Sequential Markov chain Monte Carlo filter with simultaneous model selection for electrocardiogram signal modeling.

作者信息

Edla Shwetha, Kovvali Narayan, Papandreou-Suppappola Antonia

机构信息

School of Electrical, Computer and Energy Engineering at Arizona State University in Tempe, AZ, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4291-4. doi: 10.1109/EMBC.2012.6346915.

Abstract

Constructing statistical models of electrocardiogram (ECG) signals, whose parameters can be used for automated disease classification, is of great importance in precluding manual annotation and providing prompt diagnosis of cardiac diseases. ECG signals consist of several segments with different morphologies (namely the P wave, QRS complex and the T wave) in a single heart beat, which can vary across individuals and diseases. Also, existing statistical ECG models exhibit a reliance upon obtaining a priori information from the ECG data by using preprocessing algorithms to initialize the filter parameters, or to define the user-specified model parameters. In this paper, we propose an ECG modeling technique using the sequential Markov chain Monte Carlo (SMCMC) filter that can perform simultaneous model selection, by adaptively choosing from different representations depending upon the nature of the data. Our results demonstrate the ability of the algorithm to track various types of ECG morphologies, including intermittently occurring ECG beats. In addition, we use the estimated model parameters as the feature set to classify between ECG signals with normal sinus rhythm and four different types of arrhythmia.

摘要

构建心电图(ECG)信号的统计模型,其参数可用于疾病自动分类,这对于排除人工注释和提供心脏病的快速诊断非常重要。心电图信号在单次心跳中由几个具有不同形态的部分组成(即P波、QRS复合波和T波),这些部分在个体和疾病之间可能会有所不同。此外,现有的统计心电图模型依赖于通过使用预处理算法来初始化滤波器参数或定义用户指定的模型参数,从心电图数据中获取先验信息。在本文中,我们提出了一种使用顺序马尔可夫链蒙特卡罗(SMCMC)滤波器的心电图建模技术,该技术可以通过根据数据的性质从不同表示中自适应选择来执行同时模型选择。我们的结果证明了该算法跟踪各种类型心电图形态的能力,包括间歇性出现的心电图搏动。此外,我们将估计的模型参数用作特征集,以区分正常窦性心律的心电图信号和四种不同类型的心律失常。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验