Patterson Matthew R, Caulfield Brian
CLARITY Centre for Sensor Web Technologies and the School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin 4, Ireland.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4509-12. doi: 10.1109/EMBC.2012.6346969.
The purpose of this research was to compare different adaptive algorithms in terms of their ability to determine temporal gait parameters based on data acquired from inertial measurement units (IMUs). Eight subjects performed 25 walking trials over a force plate under five different conditions; normal, fast, slow, simulated stiff ankle and simulated stiff knee walking. Data from IMUs worn on the shanks and on the feet were used to identify temporal gait features using three different adaptive algorithms (Green, Selles & Sabatini). Each method's ability to estimate temporal events was compared to the gold standard force plate method for stance time (Greene, r= .990, Selles, r= 0.865, Sabatini, r= 0.980) and double support time (Greene, r= .837, Selles, r= .583, Sabatini, r= .745). The Greene method of estimating gait events from inertial sensor data resulted in the most accurate stance and double support times.
本研究的目的是比较不同的自适应算法在基于惯性测量单元(IMU)获取的数据确定时间步态参数方面的能力。八名受试者在力板上于五种不同条件下进行了25次步行试验;正常、快速、慢速、模拟踝关节僵硬和模拟膝关节僵硬行走。使用佩戴在小腿和足部的IMU数据,通过三种不同的自适应算法(格林、塞勒斯和萨巴蒂尼)来识别时间步态特征。将每种方法估计时间事件的能力与用于站立时间(格林,r = 0.990,塞勒斯,r = 0.865,萨巴蒂尼,r = 0.980)和双支撑时间(格林,r = 0.837,塞勒斯,r = 0.583,萨巴蒂尼,r = 0.745)的金标准力板方法进行比较。从惯性传感器数据估计步态事件的格林方法得出了最准确的站立和双支撑时间。