Suppr超能文献

比较使用下半身安装的惯性传感器测量步态时间参数的自适应算法。

Comparing adaptive algorithms to measure temporal gait parameters using lower body mounted inertial sensors.

作者信息

Patterson Matthew R, Caulfield Brian

机构信息

CLARITY Centre for Sensor Web Technologies and the School of Public Health, Physiotherapy and Population Science, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4509-12. doi: 10.1109/EMBC.2012.6346969.

Abstract

The purpose of this research was to compare different adaptive algorithms in terms of their ability to determine temporal gait parameters based on data acquired from inertial measurement units (IMUs). Eight subjects performed 25 walking trials over a force plate under five different conditions; normal, fast, slow, simulated stiff ankle and simulated stiff knee walking. Data from IMUs worn on the shanks and on the feet were used to identify temporal gait features using three different adaptive algorithms (Green, Selles & Sabatini). Each method's ability to estimate temporal events was compared to the gold standard force plate method for stance time (Greene, r= .990, Selles, r= 0.865, Sabatini, r= 0.980) and double support time (Greene, r= .837, Selles, r= .583, Sabatini, r= .745). The Greene method of estimating gait events from inertial sensor data resulted in the most accurate stance and double support times.

摘要

本研究的目的是比较不同的自适应算法在基于惯性测量单元(IMU)获取的数据确定时间步态参数方面的能力。八名受试者在力板上于五种不同条件下进行了25次步行试验;正常、快速、慢速、模拟踝关节僵硬和模拟膝关节僵硬行走。使用佩戴在小腿和足部的IMU数据,通过三种不同的自适应算法(格林、塞勒斯和萨巴蒂尼)来识别时间步态特征。将每种方法估计时间事件的能力与用于站立时间(格林,r = 0.990,塞勒斯,r = 0.865,萨巴蒂尼,r = 0.980)和双支撑时间(格林,r = 0.837,塞勒斯,r = 0.583,萨巴蒂尼,r = 0.745)的金标准力板方法进行比较。从惯性传感器数据估计步态事件的格林方法得出了最准确的站立和双支撑时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验