Gavgani Alireza Mazloumi, Dogrusoz Yesim Serinagaoglu
Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, Turkey.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5919-22. doi: 10.1109/EMBC.2012.6347341.
Filtering has been widely used in biomedical signal processing and image processing applications to cancel noise effects in signals recorded from the body. However, it is important to keep the desired characteristics of the physiological signal of interest while suppressing the noise characteristics. In this study, we used anisotropic diffusion filter (ADF) to cancel the noise on the body surface potentials measurements (BSPM) with the goal of improving the corresponding solutions of the inverse problem of electrocardiology (ECG). ADFs have been applied to image processing and they have the advantage of preserving sharp edges while rejecting the noise, thus we have chosen ADFs instead of more conventional filtering techniques. We used unfiltered and filtered BSPMs to estimate the epicardial potential distributions. We compared Tikhonov regularization results when the data included measurement noise and geometric errors. In both cases, filtering of BSPMs using the ADF improved our solutions.
滤波已广泛应用于生物医学信号处理和图像处理应用中,以消除从身体记录的信号中的噪声影响。然而,在抑制噪声特性的同时,保持感兴趣的生理信号的期望特性非常重要。在本研究中,我们使用各向异性扩散滤波器(ADF)来消除体表电位测量(BSPM)中的噪声,目的是改善心电图(ECG)逆问题的相应解决方案。ADF已应用于图像处理,它们具有在抑制噪声的同时保留锐利边缘的优点,因此我们选择了ADF而不是更传统的滤波技术。我们使用未滤波和滤波后的BSPM来估计心外膜电位分布。我们比较了数据包含测量噪声和几何误差时的蒂霍诺夫正则化结果。在这两种情况下,使用ADF对BSPM进行滤波都改善了我们的解决方案。