Duggento Andrea, Stankovski Tomislav, McClintock Peter V E, Stefanovska Aneta
Medical Physics Section, Faculty of Medicine, Tor Vergata University, Rome, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061126. doi: 10.1103/PhysRevE.86.061126. Epub 2012 Dec 21.
Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.
生命系统具有随时间演化的相互作用,直到最近,在存在噪声的情况下,这些相互作用仍无法从记录的时间序列中准确识别出来。斯坦科夫斯基等人[《物理评论快报》109, 024101 (2012)] 介绍了一种基于动态贝叶斯推理的方法,该方法有助于同时检测随时间变化的同步性、影响的方向性和耦合函数。它可以将未同步的动力学与噪声引起的相位滑移区分开来。该方法基于相位动力学,通过塑造先验密度以纳入先前样本的知识来实现对随时间演化参数的贝叶斯推理。我们现在使用数值生成的数据、模拟电子电路的数据和心肺数据详细介绍该方法。我们还将该方法推广到包含相互作用振荡器网络的情况,从而证明其对小规模网络的适用性。