Department of Physics, University of Illinois, Urbana, Illinois 61801, USA.
Phys Rev Lett. 2012 Dec 7;109(23):237009. doi: 10.1103/PhysRevLett.109.237009. Epub 2012 Dec 5.
It has been shown that doped topological insulators, up to a certain level of doping, still preserve some topological signatures of the insulating phase such as axionic electromagnetic response and the presence of a Majorana mode in the vortices of a superconducting phase. Multiple topological insulators such as HgTe, ScPtBi, and other ternary Heusler compounds have been identified and generically feature the presence of a topologically trivial band between the two topological bands. In this Letter we show that the presence of such a trivial band can stabilize the topological signature over a much wider range of doping. Specifically, we calculate the structure of vortex modes in the superconducting phase of doped topological insulators, a model that captures the features of HgTe and the ternary Heusler compounds. We show that, due to the hybridization with the trivial band, Majorana modes are preserved over a large, extended doping range for p doping. In addition to presenting a viable system where much less fine-tuning is required to observe the Majorana modes, our analysis opens a route to study other topological features of doped compounds that cannot be modeled using the simple Bi(2)Se(3) Dirac model.
已经表明,在一定的掺杂水平下,掺杂拓扑绝缘体仍然保留了绝缘相的一些拓扑特征,例如轴子电磁响应和超导相涡旋中的马约拉纳模式。已经确定了多种拓扑绝缘体,例如 HgTe、ScPtBi 和其他三元 Heusler 化合物,它们通常具有在两个拓扑带之间存在拓扑平凡带的特征。在这封信中,我们表明,这种平凡带的存在可以在更宽的掺杂范围内稳定拓扑特征。具体来说,我们计算了掺杂拓扑绝缘体超导相中的涡旋模式的结构,该模型捕获了 HgTe 和三元 Heusler 化合物的特征。我们表明,由于与平凡带的杂化,在较大的扩展掺杂范围内,马约拉纳模式得以保留。除了提供一个可行的系统,其中需要较少的微调来观察马约拉纳模式外,我们的分析还开辟了一条研究掺杂化合物其他拓扑特征的途径,这些特征无法使用简单的 Bi(2)Se(3)狄拉克模型来建模。