Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Phys Rev Lett. 2012 Dec 7;109(23):237204. doi: 10.1103/PhysRevLett.109.237204. Epub 2012 Dec 4.
We report on the thermoelectric detection of spin waves in Permalloy stripes via the anomalous Nernst effect. Spin waves are locally excited by a dynamic magnetic field generated from a microwave current flowing in a coplanar waveguide placed on top of a Permalloy stripe, which acts as a waveguide for spin waves. Electric contacts at the ends of the Permalloy stripe measure a dc voltage generated along the stripe. Magnetic field sweeps for different applied microwave frequencies reveal, with a remarkable signal-to-noise ratio, an electric voltage signature characteristic of spin-wave excitations. The symmetry of the signal with respect to the applied magnetic field direction indicates that the anomalous Nernst effect is responsible; Seebeck effects, anisotropic magnetoresistance, and voltages due to spin-motive forces are excluded. The dissipation of spin waves causes local heating that drains into the substrate, giving rise to a temperature gradient perpendicular to the sample plane, resulting in the anomalous Nernst voltage.
我们通过反常聂耳效应报告了在坡莫合金条中通过微波电流在平面波导上激发自旋波的热电器件检测。自旋波由位于坡莫合金条上方的平面波导中的微波电流产生的动态磁场局部激发,该波导作为自旋波的波导。坡莫合金条两端的电接触测量沿条产生的直流电压。不同外加微波频率的磁场扫描以显著的信噪比揭示了自旋波激发的电压特征。信号相对于外加磁场方向的对称性表明反常聂耳效应是其原因;排除了塞贝克效应、各向异性磁电阻和由于自旋磁动势引起的电压。自旋波的耗散会导致局部加热,从而流入衬底,导致垂直于样品平面的温度梯度,从而产生反常聂耳电压。