Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA.
Phys Rev Lett. 2012 Dec 21;109(25):254503. doi: 10.1103/PhysRevLett.109.254503.
We demonstrate, via simulations of asymptotically reduced equations describing rotationally constrained Rayleigh-Bénard convection, that the efficiency of turbulent motion in the fluid bulk limits overall heat transport and determines the scaling of the nondimensional Nusselt number Nu with the Rayleigh number Ra, the Ekman number E, and the Prandtl number σ. For E << 1 inviscid scaling theory predicts and simulations confirm the large Ra scaling law Nu-1 ≈ C(1)σ(-1/2)Ra(3/2)E(2), where C(1) is a constant, estimated as C(1) ≈ 0.04 ± 0.0025. In contrast, the corresponding result for nonrotating convection, Nu-1 ≈ C(2)Ra(α), is determined by the efficiency of the thermal boundary layers (laminar: 0.28 ≤ α ≤ 0.31, turbulent: α ~ 0.38). The 3/2 scaling law breaks down at Rayleigh numbers at which the thermal boundary layer loses rotational constraint, i.e., when the local Rossby number ≈ 1. The breakdown takes place while the bulk Rossby number is still small and results in a gradual transition to the nonrotating scaling law. For low Ekman numbers the location of this transition is independent of the mechanical boundary conditions.
我们通过对描述旋转约束瑞利-贝纳德对流的渐近简化方程进行模拟,证明了流体主体中湍动能的效率限制了整体热传输,并决定了无量纲努塞尔数 Nu 与瑞利数 Ra、埃克曼数 E 和普朗特数 σ 的标度关系。对于 E << 1,无粘标度理论预测并模拟证实了大 Ra 标度律 Nu-1 ≈ C(1)σ(-1/2)Ra(3/2)E(2),其中 C(1)是一个常数,估计为 C(1) ≈ 0.04 ± 0.0025。相比之下,对于非旋转对流的相应结果,Nu-1 ≈ C(2)Ra(α),由热边界层的效率决定(层流:0.28 ≤ α ≤ 0.31,湍流:α ~ 0.38)。3/2 标度律在热边界层失去旋转约束的瑞利数处失效,即当局部罗斯比数 ≈ 1 时。这种失效发生在体罗斯比数仍然较小的时候,导致逐渐过渡到非旋转标度律。对于低埃克曼数,这种转变的位置与力学边界条件无关。