X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Phys Rev Lett. 2013 Jan 18;110(3):037601. doi: 10.1103/PhysRevLett.110.037601.
Above-band-gap optical excitation produces interdependent structural and electronic responses in a multiferroic BiFeO(3) thin film. Time-resolved synchrotron x-ray diffraction shows that photoexcitation can induce a large out-of-plane strain, with magnitudes on the order of half of one percent following pulsed-laser excitation. The strain relaxes with the same nanosecond time dependence as the interband relaxation of excited charge carriers. The magnitude of the strain and its temporal correlation with excited carriers indicate that an electronic mechanism, rather than thermal effects, is responsible for the lattice expansion. The observed strain is consistent with a piezoelectric distortion resulting from partial screening of the depolarization field by charge carriers, an effect linked to the electronic transport of excited carriers. The nonthermal generation of strain via optical pulses promises to extend the manipulation of ferroelectricity in oxide multiferroics to subnanosecond time scales.
带隙以上的光激发会在多铁性 BiFeO(3) 薄膜中产生相互依存的结构和电子响应。时间分辨同步加速器 X 射线衍射表明,光激发可以诱导大的面外应变,在脉冲激光激发后,应变的大小约为 0.5%。应变的弛豫与受激电荷载流子的能带间弛豫具有相同的纳秒时间依赖性。应变的大小及其与受激载流子的时间相关性表明,晶格膨胀是由电子机制而不是热效应引起的。观察到的应变与由电荷载流子部分屏蔽去极化场引起的压电变形一致,这种效应与受激载流子的电子输运有关。通过光脉冲非热产生应变有望将氧化物多铁体中铁电性的操控扩展到纳秒时间尺度。