Dipartimento di Chimica Ugo Schiff, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy.
J Struct Biol. 2013 Apr;182(1):44-50. doi: 10.1016/j.jsb.2013.01.006. Epub 2013 Jan 30.
5-Chloromuconolactone dehalogenase (5-CMLD) is a unique enzyme that catalyzes the conversion of 5-chloromuconolactone into cis-dienelactone in the new modified ortho-pathway of the 3-chlorocatechol degradation by Rhodococcus opacus 1CP. In all other known chlorocatechol pathways the dehalogenation is a spontaneous secondary reaction of the unstable chloromuconate intermediate following the lactonization process catalyzed by the muconate cycloisomerases. The crystallographic structure of the decameric 5-CMLD was solved by Molecular Replacement, using the coordinates of the low resolution structure of the highly homologous muconolactone isomerase, an enzyme of the conventional ortho-pathway. Muconolactone isomerase catalyzes the endocyclic rearrangement of the double bond within the lactone ring of muconolactone to yield 3-oxoadipate enol lactone. Although both 5-CMLD and muconolactone isomerase share the ability to dechlorinate 5-chloromuconolactone, 5-CMLD shows a significant degree of specialization, having lost the capacity to convert its original substrate muconolactone. The active site of 5-CMLD was previously hypothesized to reside in a deep pocket at the interface of two different subunits, on the basis of a muconolactone isomerase structure analysis. In this study we also performed molecular docking calculations that confirmed these previous findings, and allowed us furthermore to determine the residues involved in the catalytic process.
5-氯代马来酸内酯脱卤酶(5-CMLD)是一种独特的酶,它在红球菌 1CP 中新修饰的邻位途径中催化 5-氯代马来酸内酯转化为顺式二烯内酯,用于 3-氯邻苯二酚的降解。在所有其他已知的邻苯二酚途径中,脱卤反应是不稳定的氯代马来酸内酯中间产物在由顺式马来酸内酯异构酶(邻位途径中的酶)催化的内酯化过程中的自发次级反应。使用高度同源的顺式马来酸内酯异构酶的低分辨率结构坐标,通过分子替换方法解决了 5-CMLD 的十聚体晶体结构。顺式马来酸内酯异构酶催化马来酸内酯中环内双键的内环重排,生成 3-氧代己二酸烯醇内酯。尽管 5-CMLD 和顺式马来酸内酯异构酶都具有脱氯 5-氯代马来酸内酯的能力,但 5-CMLD 表现出显著的专业化程度,已经失去了转化其原始底物马来酸内酯的能力。基于顺式马来酸内酯异构酶结构分析,先前假设 5-CMLD 的活性位点位于两个不同亚基界面的深口袋中。在本研究中,我们还进行了分子对接计算,证实了这些先前的发现,并使我们能够进一步确定参与催化过程的残基。