Suppr超能文献

Hha 通过差异化调节全局转录调控因子 FlhDC 和 CsgD 来控制大肠杆菌 O157:H7 生物膜的形成。

Hha controls Escherichia coli O157:H7 biofilm formation by differential regulation of global transcriptional regulators FlhDC and CsgD.

机构信息

Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, Ames, Iowa, USA.

出版信息

Appl Environ Microbiol. 2013 Apr;79(7):2384-96. doi: 10.1128/AEM.02998-12. Epub 2013 Feb 1.

Abstract

Although molecular mechanisms promoting adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 on epithelial cells are well characterized, regulatory mechanisms controlling biofilm formation are not fully understood. In this study, we demonstrate that biofilm formation in EHEC O157:H7 strain 86-24 is highly repressed compared to that in an isogenic hha mutant. The hha mutant produced large quantities of biofilm compared to the wild-type strain at 30°C and 37°C. Complementation of the hha mutant reduced the level of biofilm formation to that of the wild-type strain, indicating that Hha is a negative regulator of biofilm production. While swimming motility and expression of the flagellar gene fliC were significantly reduced, the expression of csgA (encoding curlin of curli fimbriae) and the ability to bind Congo red were significantly enhanced. The expression of both fliC and csgA and the phenotypes of motility and curli production affected by these two genes, respectively, were restored to wild-type levels in the complemented hha mutant. The csgA deletion abolished biofilm formation in the hha mutant and wild-type strain, and csgA complementation restored biofilm formation to these strains, indicating the importance of csgA and curli in biofilm formation. The regulatory effects of Hha on flagellar and curli gene expression appear to occur via the induction and repression of FlhDC and CsgD, as demonstrated by reduced flhD and increased csgD transcription in the hha mutant, respectively. In gel shift assays Hha interacted with flhDC and csgD promoters. In conclusion, Hha regulates biofilm formation in EHEC O157:H7 by differential regulation of FlhDC and CsgD, the global regulators of motility and curli production, respectively.

摘要

尽管肠出血性大肠杆菌(EHEC)O157:H7 黏附上皮细胞的分子机制已得到很好的描述,但控制生物膜形成的调节机制尚未完全了解。在本研究中,我们证明与同基因 hha 突变体相比,EHEC O157:H7 菌株 86-24 的生物膜形成受到高度抑制。与野生型菌株相比,hha 突变体在 30°C 和 37°C 下产生大量生物膜。hha 突变体的互补减少了生物膜形成的水平,与野生型菌株相当,表明 Hha 是生物膜产生的负调节剂。虽然游泳运动和鞭毛基因 fliC 的表达显著降低,但 csgA(卷曲菌毛卷曲素编码基因)的表达和与刚果红结合的能力显著增强。这些两个基因分别影响 fliC 和 csgA 的表达以及运动和卷曲产生的表型,在互补的 hha 突变体中恢复到野生型水平。csgA 缺失消除了 hha 突变体和野生型菌株中的生物膜形成,并且 csgA 互补恢复了这些菌株的生物膜形成,表明 csgA 和卷曲在生物膜形成中的重要性。Hha 对鞭毛和卷曲基因表达的调节作用似乎通过 FlhDC 和 CsgD 的诱导和抑制来发生,这分别表现为 hha 突变体中 flhD 的减少和 csgD 的转录增加。在凝胶迁移分析中,Hha 与 flhDC 和 csgD 启动子相互作用。总之,Hha 通过分别调节运动和卷曲产生的全局调节剂 FlhDC 和 CsgD,调节 EHEC O157:H7 中的生物膜形成。

相似文献

1
Hha controls Escherichia coli O157:H7 biofilm formation by differential regulation of global transcriptional regulators FlhDC and CsgD.
Appl Environ Microbiol. 2013 Apr;79(7):2384-96. doi: 10.1128/AEM.02998-12. Epub 2013 Feb 1.
2
Evaluation of the effects of sdiA, a luxR homologue, on adherence and motility of Escherichia coli O157 : H7.
Microbiology (Reading). 2010 May;156(Pt 5):1303-1312. doi: 10.1099/mic.0.034330-0. Epub 2010 Jan 28.
6
Phage insertion in mlrA and variations in rpoS limit curli expression and biofilm formation in Escherichia coli serotype O157: H7.
Microbiology (Reading). 2013 Aug;159(Pt 8):1586-1596. doi: 10.1099/mic.0.066118-0. Epub 2013 Jun 6.
7
Stx1 prophage excision in Escherichia coli strain PA20 confers strong curli and biofilm formation by restoring native mlrA.
FEMS Microbiol Lett. 2016 Jul;363(13). doi: 10.1093/femsle/fnw123. Epub 2016 May 5.
9
10
Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli.
Mol Microbiol. 2005 Sep;57(6):1734-49. doi: 10.1111/j.1365-2958.2005.04792.x.

引用本文的文献

1
RcsB and H-NS Both Contribute to the Repression the Expression of the Operon.
Microorganisms. 2025 Aug 5;13(8):1829. doi: 10.3390/microorganisms13081829.
2
YmoA functions as a molecular stress sensor in Yersinia.
Commun Biol. 2025 Feb 13;8(1):225. doi: 10.1038/s42003-025-07675-y.
5
Characterization of functional amyloid curli in biofilm formation of an environmental isolate Enterobacter cloacae SBP-8.
Antonie Van Leeuwenhoek. 2023 Aug;116(8):829-843. doi: 10.1007/s10482-023-01843-y. Epub 2023 May 27.
6
Regulation of flagellar motility and biosynthesis in enterohemorrhagic O157:H7.
Gut Microbes. 2022 Jan-Dec;14(1):2110822. doi: 10.1080/19490976.2022.2110822.
7
Derivatives of Esculentin-1 Peptides as Promising Candidates for Fighting Infections from O157:H7.
Antibiotics (Basel). 2022 May 13;11(5):656. doi: 10.3390/antibiotics11050656.
8
Genomewide transcriptional response of Escherichia coli O157:H7 to norepinephrine.
BMC Genomics. 2022 Feb 8;23(1):107. doi: 10.1186/s12864-021-08167-z.
9
Invasiveness of Is Associated with an IncFII Plasmid.
Pathogens. 2021 Dec 20;10(12):1645. doi: 10.3390/pathogens10121645.

本文引用的文献

1
Environmental factors affecting indole production in Escherichia coli.
Res Microbiol. 2011 Feb-Mar;162(2):108-16. doi: 10.1016/j.resmic.2010.11.005. Epub 2010 Dec 8.
2
Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors.
Microbiology (Reading). 2010 Aug;156(Pt 8):2470-2483. doi: 10.1099/mic.0.039131-0. Epub 2010 May 13.
3
Evaluation of the effects of sdiA, a luxR homologue, on adherence and motility of Escherichia coli O157 : H7.
Microbiology (Reading). 2010 May;156(Pt 5):1303-1312. doi: 10.1099/mic.0.034330-0. Epub 2010 Jan 28.
6
Pathogenic potential of emergent sorbitol-fermenting Escherichia coli O157:NM.
Infect Immun. 2008 Dec;76(12):5598-607. doi: 10.1128/IAI.01180-08. Epub 2008 Oct 13.
7
Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli.
Genes Dev. 2008 Sep 1;22(17):2434-46. doi: 10.1101/gad.475808.
10
Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12.
Microbiology (Reading). 2008 Jan;154(Pt 1):148-166. doi: 10.1099/mic.0.2007/012021-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验