Suppr超能文献

元胞自动机与稳态营养液相结合,可以模拟肿瘤的大规模生长。

Cellular automata coupled with steady-state nutrient solution permit simulation of large-scale growth of tumours.

机构信息

Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley, Western Australia 6009, Australia.

出版信息

Int J Numer Method Biomed Eng. 2013 Apr;29(4):542-59. doi: 10.1002/cnm.2539. Epub 2013 Feb 5.

Abstract

We model complete growth of an avascular tumour by employing cellular automata for the growth of cells and steady-state equation to solve for nutrient concentrations. Our modelling and computer simulation results show that, in the case of a brain tumour, oxygen distribution in the tumour volume may be sufficiently described by a time-independent steady-state equation without losing the characteristics of a time-dependent diffusion equation. This makes the solution of oxygen concentration in the tumour volume computationally more efficient, thus enabling simulation of tumour growth on a large scale. We solve this steady-state equation using a central difference method. We take into account the composition of cells and intercellular adhesion in addition to processes involved in cell cycle--proliferation, quiescence, apoptosis, and necrosis--in the tumour model. More importantly, we consider cell mutation that gives rise to different phenotypes and therefore a tumour with heterogeneous population of cells. A new phenotype is probabilistically chosen and has the ability to survive at lower levels of nutrient concentration and reproduce faster. We show that heterogeneity of cells that compose a tumour leads to its irregular growth and that avascular growth is not supported for tumours of diameter above 18 mm. We compare results from our growth simulation with existing experimental data on Ehrlich ascites carcinoma and tumour spheroid cultures and show that our results are in good agreement with the experimental findings.

摘要

我们通过使用细胞自动机来模拟血管生成肿瘤的完全生长,并采用稳态方程来求解营养物质浓度。我们的建模和计算机模拟结果表明,在脑肿瘤的情况下,肿瘤体积中的氧气分布可以通过与时间无关的稳态方程来充分描述,而不会失去与时间相关的扩散方程的特征。这使得在肿瘤体积中求解氧气浓度的计算效率更高,从而能够大规模模拟肿瘤生长。我们使用中心差分法求解这个稳态方程。我们在肿瘤模型中考虑了细胞的组成和细胞间的黏附,以及细胞周期中的过程——增殖、静止、凋亡和坏死。更重要的是,我们考虑了细胞突变,它会导致不同的表型,从而使肿瘤具有异质的细胞群体。一种新的表型是通过概率选择的,它能够在较低的营养浓度下存活并更快地繁殖。我们表明,构成肿瘤的细胞的异质性导致其不规则生长,并且血管生成生长不支持直径大于 18mm 的肿瘤。我们将我们的生长模拟结果与现有的艾氏腹水癌和肿瘤球体培养实验数据进行了比较,并表明我们的结果与实验结果非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验