Suppr超能文献

可见光驱动的新型纳米复合材料(BiVO4/CuCr2O4)用于高效降解有机染料。

Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye.

机构信息

Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.

出版信息

Dalton Trans. 2013 May 21;42(19):6736-44. doi: 10.1039/c2dt32753h.

Abstract

In the present study, BiVO4/CuCr2O4 nanocomposites synthesized via a chemical route are applied as a photocatalyst for the degradation of methylene blue (MB) dye. The photocatalytic activity results indicated a substantial degradation of MB dye by ~90% over the surface of nanocomposite catalyst under visible light illumination. The nanocomposite showed a photocatalytic activity for MB dye degradation which is three times higher compared to that of BiVO4. This has been attributed to photogenerated electron-hole pair charge separation. The prepared photocatalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis absorption and photoluminescence spectroscopy. Furthermore, an oxidizing reagent such as H2O2 was added to the photocatalytic system, which may act as an alternative electron scavenger and resulting in a notably enhanced rate of pollutant destruction. In addition, the effect of polyaniline has also been studied by synthesizing an organic/inorganic hybrid material (BiVO4/CuCr2O4/PANI). It has been observed that 95% photodegradation of organic dye takes place on the nanocomposite surface with visible light. A possible mechanism explaining the origin of enhanced performance of nanocomposite and nanohybrid is proposed.

摘要

在本研究中,通过化学途径合成的 BiVO4/CuCr2O4 纳米复合材料被用作光催化剂,用于降解亚甲基蓝(MB)染料。光催化活性结果表明,在可见光照射下,纳米复合材料表面对 MB 染料的降解率高达约 90%。与 BiVO4 相比,该纳米复合材料对 MB 染料降解具有三倍高的光催化活性。这归因于光生电子-空穴对的电荷分离。使用 X 射线衍射(XRD)、透射电子显微镜(TEM)、紫外-可见吸收和光致发光光谱对制备的光催化剂进行了表征。此外,在光催化体系中添加了一种氧化剂,如 H2O2,它可以作为一种替代的电子捕获剂,从而显著提高污染物的破坏速率。此外,还通过合成有机/无机杂化材料(BiVO4/CuCr2O4/PANI)研究了聚苯胺的作用。观察到在纳米复合材料表面,可见光下有机染料的光降解率达到 95%。提出了一种解释纳米复合材料和纳米杂化增强性能起源的可能机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验