Suppr超能文献

mTOR 复合物 2 磷酸化 IMP1 以协同促进 IGF2 的产生和小鼠胚胎成纤维细胞的增殖。

mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts.

机构信息

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.

出版信息

Genes Dev. 2013 Feb 1;27(3):301-12. doi: 10.1101/gad.209130.112.

Abstract

Lack of IGF2 in mice results in diminished embryonic growth due to diminished cell proliferation. Here we show that mouse embryonic fibroblasts lacking the RNA-binding protein IMP1 (IGF2 mRNA-binding protein 1) have defective splicing and translation of IGF2 mRNAs, markedly reduced IGF2 polypeptide production, and diminished proliferation. The proliferation of the IMP1-null fibroblasts can be restored to wild-type levels by IGF2 in vitro or by re-expression of IMP1, which corrects the defects in IGF2 RNA splicing and translation. The ability of IMP1 to correct these defects is dependent on IMP1 phosphorylation at Ser181, which is catalyzed cotranslationally by mTOR complex 2 (mTORC2). Phosphorylation strongly enhances IMP1 binding to the IGF2-leader 3 5' untranslated region, which is absolutely required to enable IGF2-leader 3 mRNA translational initiation by internal ribosomal entry. These findings uncover a new mechanism by which mTOR regulates organismal growth by promoting IGF2 production in the mouse embryo through mTORC2-catalyzed cotranslational IMP1/IMP3 phosphorylation. Inasmuch as TORC2 is activated by association with ribosomes, the present results indicate that mTORC2-catalyzed cotranslational protein phosphorylation is a core function of this complex.

摘要

由于细胞增殖减少,IGF2 缺失的小鼠胚胎生长受到抑制。我们发现,缺乏 RNA 结合蛋白 IMP1(IGF2 mRNA 结合蛋白 1)的小鼠胚胎成纤维细胞 IGF2 mRNA 的剪接和翻译出现缺陷,IGF2 多肽产量明显减少,增殖能力减弱。IMP1 缺失的成纤维细胞的增殖可以通过 IGF2 在体外或通过 IMP1 的重新表达恢复到野生型水平,这可以纠正 IGF2 RNA 剪接和翻译的缺陷。IMP1 纠正这些缺陷的能力依赖于 IMP1 在 Ser181 处的磷酸化,该磷酸化由 mTOR 复合物 2(mTORC2)共翻译催化。磷酸化强烈增强了 IMP1 与 IGF2-前导子 3'5'非翻译区的结合,这是通过内部核糖体进入使 IGF2-前导子 3 mRNA 翻译起始所必需的。这些发现揭示了一种新的机制,即通过 mTORC2 催化的共翻译 IMP1/IMP3 磷酸化,促进 IGF2 的产生,从而调节胚胎生长。由于 TORC2 与核糖体结合而被激活,因此目前的结果表明,mTORC2 催化的共翻译蛋白磷酸化是该复合物的核心功能。

相似文献

2
mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry.
Genes Dev. 2011 Jun 1;25(11):1159-72. doi: 10.1101/gad.2042311. Epub 2011 May 16.
5
mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide.
EMBO J. 2010 Dec 1;29(23):3939-51. doi: 10.1038/emboj.2010.271. Epub 2010 Nov 2.
6
Regulation of Fetal Genes by Transitions among RNA-Binding Proteins during Liver Development.
Int J Mol Sci. 2020 Dec 7;21(23):9319. doi: 10.3390/ijms21239319.
7
Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.
J Biol Chem. 2012 Dec 14;287(51):42890-9. doi: 10.1074/jbc.M112.404822. Epub 2012 Oct 26.
8
A unifying model for mTORC1-mediated regulation of mRNA translation.
Nature. 2012 May 2;485(7396):109-13. doi: 10.1038/nature11083.
9
CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells.
J Biol Chem. 2005 May 20;280(20):20086-93. doi: 10.1074/jbc.M410036200. Epub 2005 Mar 14.

引用本文的文献

1
The Central FacilitaTOR: Coordinating Transcription and Translation in Eukaryotes.
Int J Mol Sci. 2025 Mar 21;26(7):2845. doi: 10.3390/ijms26072845.
3
MiR-155-5p regulates autophagy and apoptosis of glioma cells through RICTOR.
Transl Cancer Res. 2024 Oct 31;13(10):5509-5521. doi: 10.21037/tcr-24-543. Epub 2024 Oct 18.
4
An image-based RNAi screen identifies the EGFR signaling pathway as a regulator of Imp RNP granules.
J Cell Sci. 2024 Dec 1;137(23). doi: 10.1242/jcs.262119. Epub 2024 Dec 10.
7
The mTORC2 signaling network: targets and cross-talks.
Biochem J. 2024 Jan 25;481(2):45-91. doi: 10.1042/BCJ20220325.
9
Parkin regulates IGF2BP3 through ubiquitination in the tumourigenesis of cervical cancer.
Clin Transl Med. 2023 Oct;13(10):e1457. doi: 10.1002/ctm2.1457.

本文引用的文献

1
mTOR signaling in growth control and disease.
Cell. 2012 Apr 13;149(2):274-93. doi: 10.1016/j.cell.2012.03.017.
2
mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry.
Genes Dev. 2011 Jun 1;25(11):1159-72. doi: 10.1101/gad.2042311. Epub 2011 May 16.
3
Activation of mTORC2 by association with the ribosome.
Cell. 2011 Mar 4;144(5):757-68. doi: 10.1016/j.cell.2011.02.014.
4
A tissue-specific atlas of mouse protein phosphorylation and expression.
Cell. 2010 Dec 23;143(7):1174-89. doi: 10.1016/j.cell.2010.12.001.
5
mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide.
EMBO J. 2010 Dec 1;29(23):3939-51. doi: 10.1038/emboj.2010.271. Epub 2010 Nov 2.
6
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.
Cell. 2010 Apr 2;141(1):129-41. doi: 10.1016/j.cell.2010.03.009.
7
Regulation of tissue growth through nutrient sensing.
Annu Rev Genet. 2009;43:389-410. doi: 10.1146/annurev-genet-102108-134815.
8
SUnSET, a nonradioactive method to monitor protein synthesis.
Nat Methods. 2009 Apr;6(4):275-7. doi: 10.1038/nmeth.1314. Epub 2009 Mar 22.
9
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1.
J Biol Chem. 2009 Mar 20;284(12):8023-32. doi: 10.1074/jbc.M900301200. Epub 2009 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验