267 Experimental Urology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, the Netherlands.
Anticancer Res. 2013 Feb;33(2):553-7.
Prostate Cancer Gene-3 (PCA3) is highly prostate cancer (PCa)-specific and its application holds promise in identifying men with PCa.
To determine whether the PCA3 score can be used relative to PCa clinical variables to predict biopsy outcome.
PCA3 scores were assessed in a group of 80 patients using the Progensa assay (Gen-Probe, San Diego, CA, USA). The logistic regression algorithm was used to combine PCA3 results with the established biopsy risk factors including: age, prostate-specific antigen (PSA), digital rectal examination (DRE) and prostate volume (Pvol).
In univariate analyses, the Progensa PCA3 score outperformed all biopsy risk predictors. A logistic regression algorithm using: age, PCA3, PSA, DRE and Pvol increased the area under the Receiver Operating Characteristic (ROC) curve from 0.72 for PCA3-alone to 0.85.
Combining PCA3 results with PCa risk factors provides significant improvements over the use of PCA3- or PSA-alone in predicting the probability of a positive prostate biopsy.
前列腺癌基因 3(PCA3)对前列腺癌(PCa)具有高度特异性,其应用有望用于识别患有 PCa 的男性。
确定 PCA3 评分是否可以相对于 PCa 的临床变量用于预测活检结果。
使用 Progensa 检测试剂盒(Gen-Probe,圣地亚哥,加利福尼亚州,美国)评估了 80 例患者的 PCA3 评分。使用逻辑回归算法将 PCA3 结果与既定的活检风险因素(包括年龄、前列腺特异性抗原(PSA)、直肠指检(DRE)和前列腺体积(Pvol))相结合。
在单变量分析中,Progensa PCA3 评分优于所有活检风险预测因子。使用以下算法:年龄、PCA3、PSA、DRE 和 Pvol,ROC 曲线下面积从 PCA3 单独使用的 0.72 增加到 0.85。
将 PCA3 结果与 PCa 风险因素相结合,在预测前列腺活检阳性概率方面,相较于单独使用 PCA3 或 PSA 具有显著改善。