University of North Dakota, Department of Chemistry, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA.
J Chromatogr A. 2013 Mar 1;1279:27-35. doi: 10.1016/j.chroma.2013.01.021. Epub 2013 Jan 12.
A stepwise analytical protocol is presented for recognition of uncharacterized organic chemical entities comprising carbonaceous air particulate matter (PM). In this method, thermal treatment of PM samples starts with thermal extraction (TE) using temperatures below 300 °C to evolve volatile low molecular weight (LMW) chemicals followed by pyrolysis (Py) of non-volatile high molecular weight (HMW) compounds to yield signature patterns of their decomposition products. Both volatile species and pyrolyzed products are characterized using gas chromatography (GC) with a mass spectrometric (MS) detection. The efficacy of sequential TE (at 200 and 300 °C) and Py (at 400, 500, 600, 700, 800, 900 and 1000 °C) was demonstrated on a defined mixture of LMW species and non-volatile polystyrene, a model HMW compound. When a solid matrix, in a form of silica or graphite particles, was introduced to this system, we determined that a solvent extraction (SE) applied prior to a sequential TE/Py-GC/MS sample analysis was an essential step to eliminate the analyte-matrix interactions, which hindered the vaporization of LMW compounds from a solid matrix resulting in a poor TE/Py separation. This SE/TE/Py-GC/MS method was then successfully applied to PM samples representing real-world PM matrices to discover several novel features of PM composition. HMW species were observed in both water-soluble (extracts) and unextractable (solid residues after an exhaustive solvent extraction) fractions of wood smoke and urban PM. The species evolving upon pyrolysis were associated with the corresponding precursor polymers, such as oxidized fragments of lignin, polysaccharides and lipids, in wood smoke PM and non-volatile anthropogenic hydrocarbons in urban PM. The proposed sequential SE/TE/Py-GC/MS protocol is capable of revealing otherwise unobserved chemical components while providing useful information on their interactions within a complex and poorly characterized PM matrix. Signature SE/TE/Py profiles, i.e., PM "fingerprints," provided by our approach may prove useful in source apportionment studies.
介绍了一种逐步分析方案,用于识别包含碳质空气颗粒物 (PM) 的未知有机化学实体。在这种方法中,PM 样品的热处理首先使用低于 300°C 的热萃取 (TE) 来演化挥发性低分子量 (LMW) 化学品,然后对非挥发性高分子量 (HMW) 化合物进行热解 (Py),以产生其分解产物的特征模式。挥发性物质和热解产物均使用带有质谱 (MS) 检测的气相色谱 (GC) 进行表征。顺序 TE(在 200 和 300°C 下)和 Py(在 400、500、600、700、800、900 和 1000°C 下)的功效已在定义的 LMW 物种和非挥发性聚苯乙烯(模型 HMW 化合物)混合物上得到证明。当将固体基质(以二氧化硅或石墨颗粒的形式)引入该系统时,我们确定在顺序 TE/Py-GC/MS 样品分析之前应用溶剂萃取 (SE) 是消除分析物-基质相互作用的必要步骤,该相互作用阻碍了 LMW 化合物从固体基质中蒸发,导致 TE/Py 分离不良。然后,将这种 SE/TE/Py-GC/MS 方法成功应用于代表实际 PM 基质的 PM 样品,以发现 PM 组成的几个新特征。在木质烟雾和城市 PM 的水溶性(提取物)和不可提取(彻底溶剂提取后的固体残留物)部分都观察到了 HMW 物质。在热解过程中演变的物质与相应的前体聚合物有关,例如木质烟雾 PM 中的木质素、多糖和脂质的氧化片段,以及城市 PM 中的非挥发性人为烃类。所提出的顺序 SE/TE/Py-GC/MS 方案能够揭示否则无法观察到的化学成分,同时提供有关其在复杂且特征不明确的 PM 基质中的相互作用的有用信息。我们方法提供的特征 SE/TE/Py 谱,即 PM“指纹”,可能有助于源分配研究。