Suppr超能文献

血睾屏障上 P-糖蛋白对阿霉素在睪丸中分布的作用:对近期数据的再探讨。

Role of P-glycoprotein at the blood-testis barrier on adjudin distribution in the testis: a revisit of recent data.

机构信息

Center for Biomedical Research, Population Council, New York, New York, USA.

出版信息

Adv Exp Med Biol. 2012;763:318-33. doi: 10.1007/978-1-4614-4711-5_16.

Abstract

The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in mammals including rodents and humans. It is used to sequester meiosis I and II, postmeiotic spermatid development via spermiogenesis and the release of sperm at spermiation from the systemic circulation, such that these events take place in an immune-privileged site in the adluminal (apical) compartment behind the BTB, segregated from the host immune system. Additionally, drug transporters, namely efflux (e.g., P-glycoprotein) and influx (e.g., Oatp3) pumps, many of which are integral membrane proteins in Sertoli cells at the BTB also work cooperatively to restrict the entry of drugs, toxicants, chemicals, steroids and other xenobiotics into the adluminal compartment. As such, the BTB that serves as an important physiological and selective barrier to protect germ cell development also poses a "hurdle" in male contraceptive development. For instance, adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide, a potential nonhormonal male contraceptive that exerts its effects on germ cell adhesion, most notably at the Sertoli cell-spermatid interface, to induce "premature" germ cell loss from the seminiferous epithelium mimicking spermiation, has a relatively poor bioavailability largely because of the BTB. Since male contraceptives (e.g., adjudin) will be used by healthy men for an extended period of his life span after puberty, a better understanding on the BTB is necessary in order to effectively deliver drugs across this blood-tissue barrier in particular if these compounds exert their effects on developing germ cells in the adluminal compartment. This can also reduce long-term toxicity and health risk if the effective dosing can be lowered in order to widen the margin between its safety and efficacy. Herein, we summarize latest findings in this area of research, we also provide a critical evaluation on research areas that deserve attention in future studies.

摘要

血睾屏障(BTB)是哺乳动物(包括啮齿类动物和人类)中最紧密的血液组织屏障之一。它用于隔离减数分裂 I 和 II、减数后精子细胞的发育通过精子发生和精子在精子发生过程中的释放,以使这些事件发生在 BTB 后面的腔侧(顶端)隔室中的免疫特权部位,与宿主免疫系统隔离。此外,药物转运蛋白,即外排(例如 P-糖蛋白)和摄取(例如 Oatp3)泵,其中许多是 BTB 中的 Sertoli 细胞中的整合膜蛋白,也协同工作以限制药物、毒物、化学物质、类固醇和其他外源性物质进入腔侧隔室。因此,作为保护生殖细胞发育的重要生理和选择性屏障的 BTB 也对男性避孕药的发展构成了“障碍”。例如,adjudin,1-(2,4-二氯苄基)-1H-吲唑-3-甲酰肼,一种潜在的非激素男性避孕药,通过作用于生殖细胞黏附来发挥作用,特别是在 Sertoli 细胞-精子细胞界面上,以诱导“过早”生殖细胞从生精上皮脱落,类似于精子发生,其生物利用度相对较差,主要是因为 BTB。由于男性避孕药(例如 adjudin)将在青春期后男性的寿命延长期间由健康男性使用,因此需要更好地了解 BTB,以便特别是在这些化合物对腔侧隔室中的发育中的生殖细胞发挥作用的情况下有效地将药物递送到该血液组织屏障。如果可以降低有效剂量以扩大其安全性和有效性之间的差距,这也可以降低长期毒性和健康风险。本文总结了该研究领域的最新发现,还对未来研究中值得关注的研究领域进行了批判性评价。

相似文献

3
Effective Delivery of Male Contraceptives Behind the Blood-Testis Barrier (BTB) - Lesson from Adjudin.
Curr Med Chem. 2016;23(7):701-13. doi: 10.2174/0929867323666160112122724.
6
The blood-testis barrier and its implications for male contraception.
Pharmacol Rev. 2012 Jan;64(1):16-64. doi: 10.1124/pr.110.002790. Epub 2011 Oct 28.
7
mTORC1/rpS6 signaling complex modifies BTB transport function: an in vivo study using the adjudin model.
Am J Physiol Endocrinol Metab. 2019 Jul 1;317(1):E121-E138. doi: 10.1152/ajpendo.00553.2018. Epub 2019 May 21.
8
mTORC1/rpS6 and spermatogenic function in the testis-insights from the adjudin model.
Reprod Toxicol. 2019 Oct;89:54-66. doi: 10.1016/j.reprotox.2019.07.002. Epub 2019 Jul 3.
10
Drug transporters, the blood-testis barrier, and spermatogenesis.
J Endocrinol. 2011 Mar;208(3):207-23. doi: 10.1677/JOE-10-0363. Epub 2010 Dec 6.

引用本文的文献

1
Use of Molecular Modeling to Study Spermatogenesis: An Overview Using Proteins in Sertoli Cells.
Adv Exp Med Biol. 2021;1288:205-214. doi: 10.1007/978-3-030-77779-1_10.
2
Major glucuronide metabolites of testosterone are primarily transported by MRP2 and MRP3 in human liver, intestine and kidney.
J Steroid Biochem Mol Biol. 2019 Jul;191:105350. doi: 10.1016/j.jsbmb.2019.03.027. Epub 2019 Apr 5.
3
In silico Analysis for Predicting Fatty Acids of Black Cumin Oil as Inhibitors of P-Glycoprotein.
Pharmacogn Mag. 2015 Oct;11(Suppl 4):S606-10. doi: 10.4103/0973-1296.172969.
4
Effective Delivery of Male Contraceptives Behind the Blood-Testis Barrier (BTB) - Lesson from Adjudin.
Curr Med Chem. 2016;23(7):701-13. doi: 10.2174/0929867323666160112122724.
5
Localization of multidrug resistance-associated proteins along the blood-testis barrier in rat, macaque, and human testis.
Drug Metab Dispos. 2014 Jan;42(1):89-93. doi: 10.1124/dmd.113.054577. Epub 2013 Oct 15.
6
The apical ES-BTB-BM functional axis is an emerging target for toxicant-induced infertility.
Trends Mol Med. 2013 Jul;19(7):396-405. doi: 10.1016/j.molmed.2013.03.006. Epub 2013 May 2.

本文引用的文献

3
The blood-testis barrier and its implications for male contraception.
Pharmacol Rev. 2012 Jan;64(1):16-64. doi: 10.1124/pr.110.002790. Epub 2011 Oct 28.
5
Drug transporters in drug efficacy and toxicity.
Annu Rev Pharmacol Toxicol. 2012;52:249-73. doi: 10.1146/annurev-pharmtox-010611-134529. Epub 2011 Sep 19.
6
Role of FAK in S1P-regulated endothelial permeability.
Microvasc Res. 2012 Jan;83(1):22-30. doi: 10.1016/j.mvr.2011.08.012. Epub 2011 Sep 5.
7
Interaction of innovative small molecule drugs used for cancer therapy with drug transporters.
Br J Pharmacol. 2012 Jan;165(2):345-62. doi: 10.1111/j.1476-5381.2011.01618.x.
8
The blood-testis barrier: the junctional permeability, the proteins and the lipids.
Prog Histochem Cytochem. 2011 Aug;46(2):49-127. doi: 10.1016/j.proghi.2011.05.001. Epub 2011 Jun 25.
9
Interplay between FAK, PKCδ, and p190RhoGAP in the regulation of endothelial barrier function.
Microvasc Res. 2012 Jan;83(1):12-21. doi: 10.1016/j.mvr.2011.04.005. Epub 2011 Apr 22.
10
Drug transporters and blood--testis barrier function.
J Endocrinol. 2011 Jun;209(3):337-51. doi: 10.1530/JOE-10-0474. Epub 2011 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验