Suppr超能文献

基于 I 期研究的蒙特卡罗模拟预测头孢托罗在医院获得性肺炎患者中的目标达成:一项验证研究。

Monte Carlo simulations based on phase 1 studies predict target attainment of ceftobiprole in nosocomial pneumonia patients: a validation study.

机构信息

Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, HB Nijmegen, The Netherlands.

出版信息

Antimicrob Agents Chemother. 2013 May;57(5):2047-53. doi: 10.1128/AAC.02292-12. Epub 2013 Feb 12.

Abstract

Monte Carlo simulation (MCS) of antimicrobial dosage regimens during drug development to derive predicted target attainment values is frequently used to choose the optimal dose for the treatment of patients in phase 2 and 3 studies. A criticism is that pharmacokinetic (PK) parameter estimates and variability in healthy volunteers are smaller than those in patients. In this study, the initial estimates of exposure from MCS were compared with actual exposure data in patients treated with ceftobiprole in a phase 3 nosocomial-pneumonia (NP) study (NTC00210964). Results of MCS using population PK data from ceftobiprole derived from 12 healthy volunteers were used (J. W. Mouton, A. Schmitt-Hoffmann, S. Shapiro, N. Nashed, N. C. Punt, Antimicrob. Agents Chemother. 48:1713-1718, 2004). Actual individual exposures in patients were derived after building a population pharmacokinetic model and were used to calculate the individual exposure to ceftobiprole (the percentage of time the unbound concentration exceeds the MIC [percent fT > MIC]) for a range of MIC values. For the ranges of percent fT > MIC used to determine the dosage schedule in the phase 3 NP study, the MCS using data from a single phase 1 study in healthy volunteers accurately predicted the actual clinical exposure to ceftobiprole. The difference at 50% fT > MIC at an MIC of 4 mg/liter was 3.5% for PK-sampled patients. For higher values of percent fT > MIC and MICs, the MCS slightly underestimated the target attainment, probably due to extreme values in the PK profile distribution used in the simulations. The probability of target attainment based on MCS in healthy volunteers adequately predicted the actual exposures in a patient population, including severely ill patients.

摘要

在药物开发过程中,常采用蒙特卡罗模拟(MCS)方法来预测目标达标值,以确定治疗 2 期和 3 期患者的最佳剂量。一种批评意见认为,与患者相比,健康志愿者的药代动力学(PK)参数估计值和变异性更小。在这项研究中,将 MCS 的初步暴露估计值与使用头孢托罗匹酯治疗的 3 期医院获得性肺炎(NP)研究(NTC00210964)患者的实际暴露数据进行了比较。使用来自 12 名健康志愿者的头孢托罗匹酯群体 PK 数据进行 MCS 分析的结果(J.W.Mouton、A.Schmitt-Hoffmann、S.Shapiro、N.Nashed、N.C.Punt,Antimicrob.Agents Chemother.48:1713-1718,2004)。在构建群体药代动力学模型后,从患者中得出实际个体暴露量,并用于计算头孢托罗匹酯的个体暴露量(游离浓度超过 MIC 的时间百分比[%fT>MIC]),范围为一系列 MIC 值。对于用于确定 3 期 NP 研究剂量方案的%fT>MIC 范围,使用来自健康志愿者的单期 1 期研究数据的 MCS 准确预测了头孢托罗匹酯的实际临床暴露量。在 MIC 为 4mg/L 时,50%fT>MIC 处的 PK 采样患者的差异为 3.5%。对于更高的%fT>MIC 和 MIC 值,MCS 略低估了目标达标率,可能是由于模拟中使用的 PK 分布中的极端值所致。基于健康志愿者的 MCS 计算的目标达标概率充分预测了患者人群中的实际暴露情况,包括重症患者。

相似文献

1
Monte Carlo simulations based on phase 1 studies predict target attainment of ceftobiprole in nosocomial pneumonia patients: a validation study.
Antimicrob Agents Chemother. 2013 May;57(5):2047-53. doi: 10.1128/AAC.02292-12. Epub 2013 Feb 12.
2
Probability of target attainment for ceftobiprole as derived from a population pharmacokinetic analysis of 150 subjects.
Antimicrob Agents Chemother. 2007 Jul;51(7):2378-87. doi: 10.1128/AAC.01181-06. Epub 2007 Mar 26.
5
Identifying exposure targets for treatment of staphylococcal pneumonia with ceftobiprole.
Antimicrob Agents Chemother. 2009 Aug;53(8):3294-301. doi: 10.1128/AAC.00144-09. Epub 2009 May 18.
6
Pharmacokinetics and Safety of Ceftobiprole in Pediatric Patients.
Pediatr Infect Dis J. 2021 Nov 1;40(11):997-1003. doi: 10.1097/INF.0000000000003296.

引用本文的文献

2
Model-Based Approach for Optimizing Ceftobiprole Dosage in Pediatric Patients.
Antimicrob Agents Chemother. 2021 Oct 18;65(11):e0120621. doi: 10.1128/AAC.01206-21. Epub 2021 Aug 16.
4
Ceftobiprole: pharmacokinetics and PK/PD profile.
Rev Esp Quimioter. 2019 Sep;32 Suppl 3(Suppl 3):11-16.
5
Mechanisms of action and antimicrobial activity of ceftobiprole.
Rev Esp Quimioter. 2019 Sep;32 Suppl 3(Suppl 3):3-10.
6
Technologies to address antimicrobial resistance.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12887-12895. doi: 10.1073/pnas.1717160115.
7
Pharmacokinetics and Target Attainment of Ceftobiprole in Asian and Non-Asian Subjects.
Clin Pharmacol Drug Dev. 2018 Sep;7(7):781-787. doi: 10.1002/cpdd.465. Epub 2018 May 16.
9
Evaluating In Vivo-In Vitro Correlation Using a Bayesian Approach.
AAPS J. 2016 May;18(3):619-34. doi: 10.1208/s12248-016-9880-7. Epub 2016 Feb 19.

本文引用的文献

1
The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach.
Clin Microbiol Infect. 2012 Mar;18(3):E37-45. doi: 10.1111/j.1469-0691.2011.03752.x. Epub 2012 Jan 20.
2
Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients.
J Antimicrob Chemother. 2011 Feb;66(2):227-31. doi: 10.1093/jac/dkq449. Epub 2010 Nov 30.
3
Population pharmacokinetic analysis of ceftobiprole for treatment of complicated skin and skin structure infections.
Antimicrob Agents Chemother. 2009 Mar;53(3):1228-30. doi: 10.1128/AAC.00632-08. Epub 2008 Dec 15.
4
Probability of target attainment for ceftobiprole as derived from a population pharmacokinetic analysis of 150 subjects.
Antimicrob Agents Chemother. 2007 Jul;51(7):2378-87. doi: 10.1128/AAC.01181-06. Epub 2007 Mar 26.
7
Use of Monte Carlo simulations to select therapeutic doses and provisional breakpoints of BAL9141.
Antimicrob Agents Chemother. 2004 May;48(5):1713-8. doi: 10.1128/AAC.48.5.1713-1718.2004.
8
Antimicrobial pharmacodynamics: critical interactions of 'bug and drug'.
Nat Rev Microbiol. 2004 Apr;2(4):289-300. doi: 10.1038/nrmicro862.
9
Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men.
Clin Infect Dis. 1998 Jan;26(1):1-10; quiz 11-2. doi: 10.1086/516284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验