Université Montpellier 2, Case courrier 051, 34095, Montpellier cedex 5, France,
Bioprocess Biosyst Eng. 2013 Oct;36(10):1485-96. doi: 10.1007/s00449-013-0911-9. Epub 2013 Feb 13.
This paper is devoted to the minimal time control problem for fed-batch bioreactors, in presence of an inhibitory product, which is released by the biomass proportionally to its growth. We first consider a growth rate with substrate saturation and product inhibition, and we prove that the optimal strategy is fill and wait (bang-bang). We then investigate the case of the Jin growth rate which takes into account substrate and product inhibition. For this type of growth function, we can prove the existence of singular arc paths defining singular strategies. Several configurations are addressed depending on the parameter set. For each case, we provide an optimal feedback control of the problem (of type bang-bang or bang-singular-bang). These results are obtained gathering the initial system into a planar one by using conservation laws. Thanks to Pontryagin maximum principle, Green's theorem, and properties of the switching function, we obtain the optimal synthesis. A methodology is also proposed in order to implement the optimal feeding strategies.
本文致力于研究存在抑制性产物的补料分批生物反应器的最小时间控制问题,该产物按其生长比例由生物质释放。我们首先考虑了一种具有基质饱和和产物抑制的生长率,并证明了最优策略是填充和等待(bang-bang)。然后,我们研究了 Jin 生长率的情况,该生长率考虑了基质和产物抑制。对于这种类型的生长函数,我们可以证明存在奇异弧路径定义奇异策略。根据参数集,我们可以解决几种配置的问题。对于每种情况,我们提供了一种最优的反馈控制问题(bang-bang 或 bang-singular-bang 类型)。这些结果是通过使用守恒定律将初始系统集成为一个平面系统来获得的。通过庞特里亚金最大值原理、格林定理和切换函数的性质,我们得到了最优的综合。我们还提出了一种方法来实现最优的喂养策略。