Electron Microscopy for Materials Research, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.
Inorg Chem. 2013 Jul 15;52(14):7834-43. doi: 10.1021/ic3026667. Epub 2013 Feb 13.
Novel anion-deficient perovskite-based ferrites Pb2Ba2BiFe5O13 and Pb(1.5)Ba(2.5)Bi2Fe6O16 were synthesized by solid-state reaction in air. Pb2Ba2BiFe5O13 and Pb(1.5)Ba(2.5)Bi2Fe6O16 belong to the perovskite-based A(n)B(n)O(3n-2) homologous series with n = 5 and 6, respectively, with a unit cell related to the perovskite subcell a(p) as a(p)√2 × a(p) × na(p)√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]p(101)p crystallographic shear (CS) planes. The CS operation results in (101)p-shaped perovskite blocks with a thickness of (n - 2) FeO6 octahedra connected to each other through double chains of edge-sharing FeO5 distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above T ≈ 750 K for Pb2Ba2BiFe5O13 and T ≈ 400 K for Pb(1.5)Ba(2.5)Bi2Fe6O16 the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb2Ba2BiFe5O13 and Pb(1.5)Ba(2.5)Bi2Fe6O16 undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned Fe-Fe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all n = 4, 5, 6 A(n)Fe(n)O(3n-2) (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623-632 K.
采用固态反应在空气中合成了新型阴离子缺陷钙钛矿基铁氧体 Pb2Ba2BiFe5O13 和 Pb(1.5)Ba(2.5)Bi2Fe6O16。Pb2Ba2BiFe5O13 和 Pb(1.5)Ba(2.5)Bi2Fe6O16 分别属于钙钛矿基 A(n)B(n)O(3n-2)同系物,其中 n = 5 和 6,与钙钛矿亚晶格 a(p)相关的单位晶格为 a(p)√2 × a(p) × na(p)√2。它们的结构是通过沿 1/2[110]p(101)p 晶面的[101]p 型钙钛矿块的切削从钙钛矿衍生而来的,其厚度为(n - 2)FeO6 八面体,通过边缘共享 FeO5 扭曲的四方金字塔的双链连接在一起,这些金字塔可以采用两种不同的镜像相关构型。不同构型链的有序排列提供了额外的结构复杂性水平。对于 Pb2Ba2BiFe5O13,温度高于约 750 K;对于 Pb(1.5)Ba(2.5)Bi2Fe6O16,温度高于约 400 K,链具有无序排列。在冷却过程中,两种化合物都会发生二级结构相变到有序状态。使用超空间晶体学和群论方法的组合分析相变过程中的对称变化。讨论了链有序模式与钙钛矿块中八面体倾斜之间的相关性。Pb2Ba2BiFe5O13 和 Pb(1.5)Ba(2.5)Bi2Fe6O16 经历了向反铁磁(AFM)有序态的转变,其特征是钙钛矿块中 Fe 磁矩的 G 型 AFM 有序排列。反铁磁钙钛矿块沿 CS 平面堆积,产生交替的 FM 和 AFM 对齐的 Fe-Fe 对。尽管钙钛矿块之间的磁耦合明显受挫,但所有 n = 4、5、6 的 A(n)Fe(n)O(3n-2)(A = Pb、Bi、Ba)都具有相似的奈尔温度为 623-632 K 的强反铁磁性。