Suppr超能文献

理解两亲性螺旋在 N-BAR 结构域驱动的膜重塑中的作用。

Understanding the role of amphipathic helices in N-BAR domain driven membrane remodeling.

机构信息

Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, University of Chicago, Chicago, Illinois, USA.

出版信息

Biophys J. 2013 Jan 22;104(2):404-11. doi: 10.1016/j.bpj.2012.12.006.

Abstract

Endophilin N-BAR (N-terminal helix and Bin/amphiphysin/Rvs) domain tubulates and vesiculates lipid membranes in vitro via its crescent-shaped dimer and four amphipathic helices that penetrate into membranes as wedges. Like F-BAR domains, endophilin N-BAR also forms a scaffold on membrane tubes. Unlike F-BARs, endophilin N-BARs have N-terminal H0 amphipathic helices that are proposed to interact with other N-BARs in oligomer lattices. Recent cryo-electron microscopy reconstructions shed light on the organization of the N-BAR lattice coats on a nanometer scale. However, because of the resolution of the reconstructions, the precise positioning of the amphipathic helices is still ambiguous. In this work, we applied a coarse-grained model to study various membrane remodeling scenarios induced by endophilin N-BARs. We found that H0 helices of N-BARs prefer to align in an antiparallel manner at two ends of the protein to form a stable lattice. The deletion of H0 helices causes disruption of the lattice. In addition, we analyzed the persistence lengths of the protein-coated tubes and found that the stiffness of endophilin N-BAR-coated tubules qualitatively agrees with previous experimental work studying N-BAR-coated tubules. Large-scale simulations on membrane liposomes revealed a systematic relation between H0 helix density and local membrane curvature fluctuations. The data also suggest that the H0 helix is required for BARs to form organized structures on the liposome, further illustrating its important function.

摘要

内啡啉 N-BAR(N 端螺旋和 Bin/ amphipysin/Rvs)结构域通过其新月形二聚体和四个穿透膜作为楔形的双亲螺旋将脂质膜小管化和小泡化。与 F-BAR 结构域类似,内啡啉 N-BAR 也在膜管上形成支架。与 F-BAR 不同,内啡啉 N-BAR 具有 N 端 H0 双亲螺旋,据推测这些螺旋在寡聚晶格中与其他 N-BAR 相互作用。最近的低温电子显微镜重建揭示了纳米尺度上 N-BAR 晶格涂层的组织。然而,由于重建的分辨率,双亲螺旋的精确定位仍然不明确。在这项工作中,我们应用粗粒度模型研究了内啡啉 N-BAR 诱导的各种膜重塑情景。我们发现 N-BAR 的 H0 螺旋在蛋白质的两端倾向于以反平行方式排列,形成稳定的晶格。H0 螺旋的缺失会导致晶格的破坏。此外,我们分析了蛋白包被管的持久长度,发现内啡啉 N-BAR 包被管的刚性与之前研究 N-BAR 包被管的实验工作定性一致。在膜脂质体上的大规模模拟揭示了 H0 螺旋密度和局部膜曲率波动之间的系统关系。这些数据还表明,H0 螺旋对于 BAR 在脂质体上形成有组织的结构是必需的,进一步说明了其重要功能。

相似文献

1
Understanding the role of amphipathic helices in N-BAR domain driven membrane remodeling.
Biophys J. 2013 Jan 22;104(2):404-11. doi: 10.1016/j.bpj.2012.12.006.
2
Roles of amphipathic helices and the bin/amphiphysin/rvs (BAR) domain of endophilin in membrane curvature generation.
J Biol Chem. 2010 Jun 25;285(26):20164-70. doi: 10.1074/jbc.M110.127811. Epub 2010 Apr 23.
3
Structural basis of membrane bending by the N-BAR protein endophilin.
Cell. 2012 Mar 30;149(1):137-45. doi: 10.1016/j.cell.2012.01.048.
4
The N-Terminal Amphipathic Helix of Endophilin Does Not Contribute to Its Molecular Curvature Generation Capacity.
J Am Chem Soc. 2016 Nov 9;138(44):14616-14622. doi: 10.1021/jacs.6b06820. Epub 2016 Oct 28.
5
Membrane partitioning and lipid selectivity of the N-terminal amphipathic H0 helices of endophilin isoforms.
Biochim Biophys Acta Biomembr. 2021 Oct 1;1863(10):183660. doi: 10.1016/j.bbamem.2021.183660. Epub 2021 Jun 4.
6
Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):6982-7. doi: 10.1073/pnas.1402233111. Epub 2014 Apr 28.
7
Mechanism of endophilin N-BAR domain-mediated membrane curvature.
EMBO J. 2006 Jun 21;25(12):2898-910. doi: 10.1038/sj.emboj.7601174. Epub 2006 Jun 8.
9
The N-terminal helices of amphiphysin and endophilin have different capabilities of membrane remodeling.
Biochim Biophys Acta Biomembr. 2022 Jul 1;1864(7):183907. doi: 10.1016/j.bbamem.2022.183907. Epub 2022 Mar 2.
10
Amphipathic motifs in BAR domains are essential for membrane curvature sensing.
EMBO J. 2009 Nov 4;28(21):3303-14. doi: 10.1038/emboj.2009.261. Epub 2009 Oct 8.

引用本文的文献

1
The bacterial ESCRT-III PspA rods thin lipid tubules and increase membrane curvature through helix α0 interactions.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2506286122. doi: 10.1073/pnas.2506286122. Epub 2025 Aug 4.
2
GTP hydrolysis triggers membrane remodeling by AMPH-1.
Sci Adv. 2025 Aug;11(31):eads9443. doi: 10.1126/sciadv.ads9443. Epub 2025 Aug 1.
3
Atomistic Simulations and Analysis of Peripheral Membrane Proteins with Model Lipid Bilayers.
Methods Mol Biol. 2025;2888:281-303. doi: 10.1007/978-1-0716-4318-1_19.
4
Statistical Mechanical Design Principles for Coarse-Grained Interactions across Different Conformational Free Energy Surfaces.
J Phys Chem Lett. 2023 Feb 16;14(6):1354-1362. doi: 10.1021/acs.jpclett.2c03844. Epub 2023 Feb 2.
5
Curvature dependence of BAR protein membrane association and dissociation kinetics.
Sci Rep. 2022 May 10;12(1):7676. doi: 10.1038/s41598-022-11221-9.
6
The endophilin curvature-sensitive motif requires electrostatic guidance to recycle synaptic vesicles in vivo.
Dev Cell. 2022 Mar 28;57(6):750-766.e5. doi: 10.1016/j.devcel.2022.02.021. Epub 2022 Mar 17.
7
A bacterial membrane sculpting protein with BAR domain-like activity.
Elife. 2021 Oct 13;10:e60049. doi: 10.7554/eLife.60049.
8
Coarse-Grained Force Fields from the Perspective of Statistical Mechanics: Better Understanding of the Origins of a MARTINI Hangover.
J Chem Theory Comput. 2021 Feb 9;17(2):1170-1180. doi: 10.1021/acs.jctc.0c00638. Epub 2021 Jan 21.
10
Mechanisms of negative membrane curvature sensing and generation by ESCRT III subunit Snf7.
Protein Sci. 2020 Jun;29(6):1473-1485. doi: 10.1002/pro.3851. Epub 2020 Mar 18.

本文引用的文献

1
Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography.
Cell. 2012 Aug 3;150(3):508-20. doi: 10.1016/j.cell.2012.05.046.
2
Structural basis of membrane bending by the N-BAR protein endophilin.
Cell. 2012 Mar 30;149(1):137-45. doi: 10.1016/j.cell.2012.01.048.
3
Reconstructing protein remodeled membranes in molecular detail from mesoscopic models.
Phys Chem Chem Phys. 2011 Jun 14;13(22):10430-6. doi: 10.1039/c0cp02978e. Epub 2011 Apr 18.
4
Mechanism of membrane curvature sensing by amphipathic helix containing proteins.
Biophys J. 2011 Mar 2;100(5):1271-9. doi: 10.1016/j.bpj.2011.01.036.
5
Multiscale computer simulation of the immature HIV-1 virion.
Biophys J. 2010 Nov 3;99(9):2757-65. doi: 10.1016/j.bpj.2010.08.018.
6
Water under the BAR.
Biophys J. 2010 Sep 22;99(6):1783-90. doi: 10.1016/j.bpj.2010.06.074.
7
Multiple modes of endophilin-mediated conversion of lipid vesicles into coated tubes: implications for synaptic endocytosis.
J Biol Chem. 2010 Jul 23;285(30):23351-8. doi: 10.1074/jbc.M110.143776. Epub 2010 May 18.
8
Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales.
Faraday Discuss. 2010;144:347-57; discussion 445-81. doi: 10.1039/b901996k.
9
Multiscale simulation of protein mediated membrane remodeling.
Semin Cell Dev Biol. 2010 Jun;21(4):357-62. doi: 10.1016/j.semcdb.2009.11.011. Epub 2009 Nov 13.
10
Membrane binding by the endophilin N-BAR domain.
Biophys J. 2009 Nov 18;97(10):2746-53. doi: 10.1016/j.bpj.2009.08.043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验