Suppr超能文献

基于低成本微机电系统惯性传感器的组合导航系统在线平滑。

On-line smoothing for an integrated navigation system with low-cost MEMS inertial sensors.

机构信息

Department of Geomatics, National Cheng-Kung University, 1 University Road, Tainan 701, Taiwan.

出版信息

Sensors (Basel). 2012 Dec 13;12(12):17372-89. doi: 10.3390/s121217372.

Abstract

The integration of the Inertial Navigation System (INS) and the Global Positioning System (GPS) is widely applied to seamlessly determine the time-variable position and orientation parameters of a system for navigation and mobile mapping applications. For optimal data fusion, the Kalman filter (KF) is often used for real-time applications. Backward smoothing is considered an optimal post-processing procedure. However, in current INS/GPS integration schemes, the KF and smoothing techniques still have some limitations. This article reviews the principles and analyzes the limitations of these estimators. In addition, an on-line smoothing method that overcomes the limitations of previous algorithms is proposed. For verification, an INS/GPS integrated architecture is implemented using a low-cost micro-electro-mechanical systems inertial measurement unit and a single-frequency GPS receiver. GPS signal outages are included in the testing trajectories to evaluate the effectiveness of the proposed method in comparison to conventional schemes.

摘要

惯性导航系统 (INS) 和全球定位系统 (GPS) 的集成被广泛应用于无缝确定系统的时变位置和姿态参数,以实现导航和移动测绘应用。为了实现最佳的数据融合,卡尔曼滤波器 (KF) 通常用于实时应用。回溯平滑被认为是一种最优的后处理过程。然而,在当前的 INS/GPS 集成方案中,KF 和平滑技术仍然存在一些局限性。本文综述了这些估计器的原理和分析了其局限性。此外,还提出了一种克服先前算法局限性的在线平滑方法。为了验证,使用低成本的微机电系统惯性测量单元和单频 GPS 接收器实现了 INS/GPS 集成架构。测试轨迹中包含 GPS 信号中断,以评估与传统方案相比,所提出方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5100/3571843/c12380b6b0da/sensors-12-17372f17.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验