Suppr超能文献

抑制布氏锥虫中的核苷酸糖转运会改变表面糖基化。

Inhibition of nucleotide sugar transport in Trypanosoma brucei alters surface glycosylation.

机构信息

Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA.

出版信息

J Biol Chem. 2013 Apr 12;288(15):10599-615. doi: 10.1074/jbc.M113.453597. Epub 2013 Feb 26.

Abstract

Nucleotide sugar transporters (NSTs) are indispensible for the biosynthesis of glycoproteins by providing the nucleotide sugars needed for glycosylation in the lumen of the Golgi apparatus. Mutations in NST genes cause human and cattle diseases and impaired cell walls of yeast and fungi. Information regarding their function in the protozoan parasite, Trypanosoma brucei, a causative agent of African trypanosomiasis, is unknown. Here, we characterized the substrate specificities of four NSTs, TbNST1-4, which are expressed in both the insect procyclic form (PCF) and mammalian bloodstream form (BSF) stages. TbNST1/2 transports UDP-Gal/UDP-GlcNAc, TbNST3 transports GDP-Man, and TbNST4 transports UDP-GlcNAc, UDP-GalNAc, and GDP-Man. TbNST4 is the first NST shown to transport both pyrimidine and purine nucleotide sugars and is demonstrated here to be localized at the Golgi apparatus. RNAi-mediated silencing of TbNST4 in the procyclic form caused underglycosylated surface glycoprotein EP-procyclin. Similarly, defective glycosylation of the variant surface glycoprotein (VSG221) as well as the lysosomal membrane protein p67 was observed in Δtbnst4 BSF T. brucei. Relative infectivity analysis showed that defects in glycosylation of the surface coat resulting from tbnst4 deletion were insufficient to impact the ability of this parasite to infect mice. Notably, the fact that inactivation of a single NST gene results in measurable defects in surface glycoproteins in different life cycle stages of the parasite highlights the essential role of NST(s) in glycosylation of T. brucei. Thus, results presented in this study provide a framework for conducting functional analyses of other NSTs identified in T. brucei.

摘要

核苷酸糖转运蛋白(NSTs)在高尔基体腔室中为糖基化提供所需的核苷酸糖,对于糖蛋白的生物合成是必不可少的。NST 基因的突变会导致人类和牛的疾病,并导致酵母和真菌的细胞壁受损。关于其在引起非洲锥虫病的原生动物寄生虫——布氏锥虫中的功能的信息尚不清楚。在这里,我们对在昆虫前鞭毛体(PCF)和哺乳动物血液体(BSF)阶段表达的四个 NST,即 TbNST1-4 的底物特异性进行了表征。TbNST1/2 转运 UDP-Gal/UDP-GlcNAc,TbNST3 转运 GDP-Man,而 TbNST4 转运 UDP-GlcNAc、UDP-GalNAc 和 GDP-Man。TbNST4 是第一个被证明可以转运嘧啶和嘌呤核苷酸糖的 NST,并且这里证明它定位于高尔基体。在 PCF 中通过 RNAi 介导的 TbNST4 沉默导致表面糖蛋白 EP-前鞭毛蛋白的糖基化不足。同样,在Δ tbnst4 BSF T. brucei 中也观察到变体表面糖蛋白(VSG221)以及溶酶体膜蛋白 p67 的糖基化缺陷。相对感染性分析表明,由于 tbnst4 缺失导致的表面被膜糖基化缺陷不足以影响该寄生虫感染小鼠的能力。值得注意的是,单个 NST 基因的失活会导致寄生虫不同生命周期阶段的表面糖蛋白出现可测量的缺陷,这突出表明 NST(s) 在 T. brucei 的糖基化中起着至关重要的作用。因此,本研究中的结果为在 T. brucei 中鉴定的其他 NST 进行功能分析提供了框架。

相似文献

1
Inhibition of nucleotide sugar transport in Trypanosoma brucei alters surface glycosylation.
J Biol Chem. 2013 Apr 12;288(15):10599-615. doi: 10.1074/jbc.M113.453597. Epub 2013 Feb 26.
3
Role of AP-1 in developmentally regulated lysosomal trafficking in Trypanosoma brucei.
Eukaryot Cell. 2009 Sep;8(9):1352-61. doi: 10.1128/EC.00156-09. Epub 2009 Jul 6.
4
Identification of a glycosylphosphatidylinositol anchor-modifying beta1-3 N-acetylglucosaminyl transferase in Trypanosoma brucei.
Mol Microbiol. 2009 Jan;71(2):478-91. doi: 10.1111/j.1365-2958.2008.06542.x. Epub 2008 Nov 21.
7
Two functionally divergent UDP-Gal nucleotide sugar transporters participate in phosphoglycan synthesis in Leishmania major.
J Biol Chem. 2007 May 11;282(19):14006-17. doi: 10.1074/jbc.M610869200. Epub 2007 Mar 8.
8
The de novo synthesis of GDP-fucose is essential for flagellar adhesion and cell growth in Trypanosoma brucei.
J Biol Chem. 2007 Sep 28;282(39):28853-28863. doi: 10.1074/jbc.M704742200. Epub 2007 Jul 19.
10
Identification of a glycosylphosphatidylinositol anchor-modifying β1-3 galactosyltransferase in Trypanosoma brucei.
Glycobiology. 2015 Apr;25(4):438-47. doi: 10.1093/glycob/cwu131. Epub 2014 Dec 2.

引用本文的文献

1
An RNA Interference (RNAi) Toolkit and Its Utility for Functional Genetic Analysis of ().
Genes (Basel). 2022 Dec 28;14(1):93. doi: 10.3390/genes14010093.
2
Measurement of CMP-Sialic Acid Transporter Activity in Reconstituted Proteoliposomes.
Bio Protoc. 2020 Mar 20;10(6):e3551. doi: 10.21769/BioProtoc.3551.
3
Nucleotide sugar biosynthesis occurs in the glycosomes of procyclic and bloodstream form Trypanosoma brucei.
PLoS Negl Trop Dis. 2021 Feb 16;15(2):e0009132. doi: 10.1371/journal.pntd.0009132. eCollection 2021 Feb.
4
Gateway to the Golgi: molecular mechanisms of nucleotide sugar transporters.
Curr Opin Struct Biol. 2019 Aug;57:127-134. doi: 10.1016/j.sbi.2019.03.019. Epub 2019 Apr 15.
5
Structural basis for mammalian nucleotide sugar transport.
Elife. 2019 Apr 15;8:e45221. doi: 10.7554/eLife.45221.
6
My journey in the discovery of nucleotide sugar transporters of the Golgi apparatus.
J Biol Chem. 2018 Aug 17;293(33):12653-12662. doi: 10.1074/jbc.X118.004819.
7
RFT1 Protein Affects Glycosylphosphatidylinositol (GPI) Anchor Glycosylation.
J Biol Chem. 2017 Jan 20;292(3):1103-1111. doi: 10.1074/jbc.M116.758367. Epub 2016 Dec 7.
8
Identification of a Golgi-localized UDP-N-acetylglucosamine transporter in Trypanosoma cruzi.
BMC Microbiol. 2015 Nov 21;15:269. doi: 10.1186/s12866-015-0601-7.

本文引用的文献

1
Intracellular trafficking and glycobiology of TbPDI2, a stage-specific protein disulfide isomerase in Trypanosoma brucei.
Eukaryot Cell. 2013 Jan;12(1):132-41. doi: 10.1128/EC.00293-12. Epub 2012 Nov 16.
2
Developmental diseases caused by impaired nucleotide sugar transporters.
Glycoconj J. 2013 Jan;30(1):5-10. doi: 10.1007/s10719-012-9375-4. Epub 2012 Apr 17.
3
The de novo and salvage pathways of GDP-mannose biosynthesis are both sufficient for the growth of bloodstream-form Trypanosoma brucei.
Mol Microbiol. 2012 Apr;84(2):340-51. doi: 10.1111/j.1365-2958.2012.08026.x. Epub 2012 Mar 21.
4
Replication of the ERES:Golgi junction in bloodstream-form African trypanosomes.
Mol Microbiol. 2011 Dec;82(6):1433-43. doi: 10.1111/j.1365-2958.2011.07900.x. Epub 2011 Nov 10.
5
African trypanosomes: the genome and adaptations for immune evasion.
Essays Biochem. 2011;51:47-62. doi: 10.1042/bse0510047.
9
Glycotyping of Trypanosoma brucei variant surface glycoprotein MITat1.8.
Mol Biochem Parasitol. 2010 Nov;174(1):74-7. doi: 10.1016/j.molbiopara.2010.06.007. Epub 2010 Jun 15.
10
Inhibition of Golgi apparatus glycosylation causes endoplasmic reticulum stress and decreased protein synthesis.
J Biol Chem. 2010 Aug 6;285(32):24600-8. doi: 10.1074/jbc.M110.134544. Epub 2010 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验