Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
Nano Lett. 2013 Apr 10;13(4):1502-8. doi: 10.1021/nl304604y. Epub 2013 Mar 6.
Recent advances in spectrally tuned, solution-processed plasmonic nanoparticles have provided unprecedented control over light's propagation and absorption via engineering at the nanoscale. Simultaneous parallel progress in colloidal quantum dot photovoltaics offers the potential for low-cost, large-area solar power; however, these devices suffer from poor quantum efficiency in the more weakly absorbed infrared portion of the sun's spectrum. Here, we report a plasmonic-excitonic solar cell that combines two classes of solution-processed infrared materials that we tune jointly. We show through experiment and theory that a plasmonic-excitonic design using gold nanoshells with optimized single particle scattering-to-absorption cross-section ratios leads to a strong enhancement in near-field absorption and a resultant 35% enhancement in photocurrent in the performance-limiting near-infrared spectral region.
最近在光谱调谐、溶液处理的等离子体纳米粒子方面的进展,通过纳米级工程提供了对光传播和吸收的前所未有的控制。胶体量子点光伏技术的同时平行进展为低成本、大面积太阳能提供了潜力;然而,这些设备在太阳光谱中较弱吸收的红外部分的量子效率较差。在这里,我们报告了一种等离子体-激子太阳能电池,它结合了我们共同调整的两类溶液处理的红外材料。我们通过实验和理论表明,使用具有优化的单粒子散射-吸收截面比的金纳米壳的等离子体-激子设计导致近场吸收的强烈增强,以及在性能限制的近红外光谱区域中光电流的 35%增强。