Pacheco Homem Débora, Flores Rogério, Tosqui Priscilla, de Castro Rozada Thiago, Abicht Basso Ernani, Gasparotto Arquimedes, Augusto Vicente Seixas Flavio
State University of Maringá, Av. Colombo 5790, Maringá, PR, Brazil.
Mol Biosyst. 2013 Jun;9(6):1308-15. doi: 10.1039/c3mb25530a. Epub 2013 Feb 28.
The aim of this work was to solve the structure of the enzyme dihydrofolate reductase from Toxoplasma gondii (TgondiiDHFR) as a target for drug discovery on account of recent reports of parasite's growing resistance to pyrimethamine (CP6), which is the reference pharmaceutical used to treat toxoplasmosis and malaria. The tertiary structure of the protein bonded to NADP(+) and CP6 was solved by homology modeling. The best output model was subjected to conjugate gradient minimization and the comparison with templates shows important replacements at the inhibitor's binding site allowing selective drug design. CP6 redocking in TgondiiDHFR shows a ΔGbinding of -8.66 kcal mol(-1), higher than those found for templates Plasmodium vivax (-9.01) and P. falciparum (-8.99). Virtual screening of ligands similar to CP6 was performed using the ZINC database and docking procedures were carried out. The result indicates the substances ZINC14966516, ZINC13685962, ZINC13685929 and ZINC13686062 with a ΔGbinding of -10.57, -10.09, -9.87, and -9.76 kcal mol(-1), respectively, as the best choices. NPT molecular dynamics with the complexes indicates that they remained stable along the 10 ns simulation and they dock to TgondiiDHFR by salt bridges to the Asp 30 and to nine other residues in the contact region, which makes it more difficult for single mutations to acquire resistance. The contact frequency of protein residues with ligands suggests plausible explanations for site-directed mutagenesis studies regarding CP6 resistance described previously in the literature. All results indicate that the new ligands could be tested as pyrimethamine substitutes in the treatment of toxoplasmosis, in addition to other protozoonosis diseases.
由于近期有报道称寄生虫对用于治疗弓形虫病和疟疾的参考药物乙胺嘧啶(CP6)产生了越来越强的耐药性,本研究旨在解析来自刚地弓形虫的二氢叶酸还原酶(TgondiiDHFR)的结构,以此作为药物研发的靶点。通过同源建模解析了与NADP(+)和CP6结合的蛋白质的三级结构。对最佳输出模型进行共轭梯度最小化处理,与模板的比较显示抑制剂结合位点存在重要替换,这有助于进行选择性药物设计。CP6在TgondiiDHFR中的重新对接显示结合自由能ΔGbinding为 -8.66 kcal mol(-1),高于间日疟原虫(-9.01)和恶性疟原虫(-8.99)模板的结合自由能。使用ZINC数据库对与CP6相似的配体进行虚拟筛选,并进行对接程序。结果表明,ZINC14966516、ZINC13685962、ZINC13685929和ZINC13686062这几种物质的结合自由能分别为 -10.57、-10.09、-9.87和 -9.76 kcal mol(-1),是最佳选择。复合物的NPT分子动力学表明,它们在10 ns模拟过程中保持稳定,并且通过与Asp 30和接触区域的其他九个残基形成盐桥与TgondiiDHFR对接,这使得单个突变产生耐药性更加困难。蛋白质残基与配体的接触频率为文献中先前描述的关于CP6耐药性的定点诱变研究提供了合理的解释。所有结果表明,除了其他原生动物疾病外,新配体可作为乙胺嘧啶替代品用于弓形虫病的治疗测试。