Suppr超能文献

菌丝体对芴被多环芳烃降解菌利用的影响。

Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria.

机构信息

Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.

出版信息

Environ Sci Technol. 2013 Jul 2;47(13):6908-15. doi: 10.1021/es304378d. Epub 2013 Mar 18.

Abstract

Mycelia have been recently shown to actively transport polycyclic aromatic hydrocarbons (PAH) in water-unsaturated soil over the range of centimeters, thereby efficiently mobilizing hydrophobic PAH beyond their purely diffusive transport in air and water. However, the question if mycelia-based PAH transport has an effect on PAH biodegradation was so far unsolved. To address this, we developed a laboratory model microcosm mimicking air-water interfaces in soil. Chemical analyses demonstrated transport of the PAH fluorene (FLU) by the mycelial oomycete Pythium ultimum that was grown along the air-water interfaces. Furthermore, degradation of mycelia-transported FLU by the bacterium Burkholderia sartisoli RP037-mChe was indicated. Since this organism expresses eGFP in response to a FLU flux to the cell, it was also as a bacterial reporter of FLU bioavailability in the vicinity of mycelia. Confocal laser scanning microscopy (CLSM) and image analyses revealed a significant increase of eGFP expression in the presence of P. ultimum compared to controls without mycelia or FLU. Hence, we could show that physically separated FLU becomes bioavailable to bacteria after transport by mycelia. Experiments with silicon coated glass fibers capturing mycelia-transported FLU guided us to propose a three-step mechanism of passive uptake, active transport and diffusion-driven release. These experiments were also used to evaluate the contributions of these individual steps to the overall mycelial FLU transport rate.

摘要

菌丝体最近被证明能够在水不饱和土壤中主动运输多环芳烃(PAH),范围可达数厘米,从而有效地将疏水性 PAH 从其在空气和水中的纯扩散运输中移动。然而,菌丝体介导的 PAH 运输是否会影响 PAH 生物降解的问题至今尚未解决。为了解决这个问题,我们开发了一个实验室模型微宇宙,模拟土壤中的气-水界面。化学分析表明,在气-水界面生长的卵菌疫霉能够运输多环芳烃芴(FLU)。此外,还表明细菌伯克霍尔德菌 RP037-mChe 可以降解菌丝体运输的 FLU。由于该生物在 FLU 通量到达细胞时会表达 eGFP,因此它也是菌丝体附近 FLU 生物利用度的细菌报告生物。共聚焦激光扫描显微镜(CLSM)和图像分析显示,与没有菌丝体或 FLU 的对照相比,在存在疫霉的情况下,eGFP 的表达显著增加。因此,我们可以证明,经过菌丝体运输后,物理分离的 FLU 对细菌变得具有生物利用度。用硅涂层玻璃纤维捕获菌丝体运输的 FLU 的实验指导我们提出了一个三步机制,包括被动吸收、主动运输和扩散驱动释放。这些实验还用于评估这些单独步骤对菌丝体总 FLU 运输速率的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验