Suppr超能文献

基于图形处理单元的反应力场(ReaxFF)分子动力学算法。

Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.

机构信息

State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.

出版信息

J Mol Graph Model. 2013 Apr;41:1-11. doi: 10.1016/j.jmgm.2013.02.001. Epub 2013 Feb 10.

Abstract

Reactive force field (ReaxFF), a recent and novel bond order potential, allows for reactive molecular dynamics (ReaxFF MD) simulations for modeling larger and more complex molecular systems involving chemical reactions when compared with computation intensive quantum mechanical methods. However, ReaxFF MD can be approximately 10-50 times slower than classical MD due to its explicit modeling of bond forming and breaking, the dynamic charge equilibration at each time-step, and its one order smaller time-step than the classical MD, all of which pose significant computational challenges in simulation capability to reach spatio-temporal scales of nanometers and nanoseconds. The very recent advances of graphics processing unit (GPU) provide not only highly favorable performance for GPU enabled MD programs compared with CPU implementations but also an opportunity to manage with the computing power and memory demanding nature imposed on computer hardware by ReaxFF MD. In this paper, we present the algorithms of GMD-Reax, the first GPU enabled ReaxFF MD program with significantly improved performance surpassing CPU implementations on desktop workstations. The performance of GMD-Reax has been benchmarked on a PC equipped with a NVIDIA C2050 GPU for coal pyrolysis simulation systems with atoms ranging from 1378 to 27,283. GMD-Reax achieved speedups as high as 12 times faster than Duin et al.'s FORTRAN codes in Lammps on 8 CPU cores and 6 times faster than the Lammps' C codes based on PuReMD in terms of the simulation time per time-step averaged over 100 steps. GMD-Reax could be used as a new and efficient computational tool for exploiting very complex molecular reactions via ReaxFF MD simulation on desktop workstations.

摘要

反应力场(ReaxFF)是一种最近出现的新颖键级势函数,可以用于反应分子动力学(ReaxFF MD)模拟,从而对涉及化学反应的更大和更复杂的分子系统进行建模,这与计算密集型量子力学方法相比具有优势。然而,由于其对键形成和断裂的显式建模、每个时间步的动态电荷平衡以及比经典 MD 小一个数量级的时间步长,ReaxFF MD 的速度可能比经典 MD 慢 10-50 倍左右,所有这些都对模拟能力提出了重大的计算挑战,难以达到纳米和纳秒级的时空尺度。图形处理单元(GPU)的最新进展不仅为启用 GPU 的 MD 程序提供了比 CPU 实现更高的性能,而且为应对 ReaxFF MD 对计算机硬件的计算能力和内存需求的挑战提供了机会。在本文中,我们介绍了 GMD-Reax 的算法,这是第一个具有显著性能提升的 GPU 启用 ReaxFF MD 程序,在桌面工作站上超越了 CPU 实现。在配备 NVIDIA C2050 GPU 的 PC 上,我们对 GMD-Reax 的性能进行了基准测试,用于模拟包含 1378 到 27283 个原子的煤热解系统。与基于 PuReMD 的 Lammps C 代码相比,在 8 个 CPU 核上,GMD-Reax 在 100 个时间步长的平均每个时间步的模拟时间方面,比 Duin 等人的 Lammps FORTRAN 代码快 12 倍,比基于 PuReMD 的 Lammps C 代码快 6 倍。GMD-Reax 可以作为一种新的高效计算工具,用于在桌面工作站上通过 ReaxFF MD 模拟来研究非常复杂的分子反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验