Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
Dalton Trans. 2013 Jun 14;42(22):7971-9. doi: 10.1039/c3dt32964j. Epub 2013 Mar 1.
This work focuses on the design of composite photoanodes with dual-mode luminescent function as well as the effects of luminescent phosphors on the photoelectric properties of dye-sensitized solar cells. Specifically, hexagonal phase NaYF4:Yb(3+)/Er(3+) microcrystals were prepared by a hydrothermal method and added to the TiO2 photoanodes of dye-sensitized solar cells. The results indicated that the TiO2-NaYF4:Yb(3+)/Er(3+) composite photoanodes can emit visible light under 495 or 980 nm excitation, and then the visible light can be absorbed by dye N719 to improve light harvesting and thereby the efficiency of the solar cell. Under simulated solar radiation in the wavelength range of λ≥ 400 nm, the photoelectric conversion efficiency of TiO2-NaYF4:Yb(3+)/Er(3+) cell was increased by 10% compared to pure TiO2 cell. For the electrodes with the same thickness, the amount of dye adsorption of the photoanodes decreased a little after adding NaYF4:Yb(3+)/Er(3+), which was attributed to the decrease of TiO2 in the photoanodes. The electron transport and interfacial recombination kinetics were investigated by the electrochemical impedance spectroscopy and intensity-modulated photocurrent/photovoltage spectroscopy. The TiO2-NaYF4:Yb(3+)/Er(3+) cell has longer electron recombination time as well as electron transport time than pure TiO2 cell. The charge collection efficiency of TiO2-NaYF4:Yb(3+)/Er(3+) cell was little lower than that of pure TiO2 cell. In addition, the interfacial resistance of the TiO2-dye|I3(-)/I(-) electrolyte interface of TiO2-NaYF4:Yb(3+)/Er(3+) cell was much bigger than that of pure TiO2 cell. All these results indicated that the charge transport cannot be improved by adding NaYF4:Yb(3+)/Er(3+). And thus, the enhanced photoelectric conversion efficiencies of TiO2-NaYF4:Yb(3+)/Er(3+) cells were closely related to the dual-mode luminescent function of NaYF4:Yb(3+)/Er(3+).
这项工作专注于设计具有双模式发光功能的复合光阳极以及发光荧光粉对染料敏化太阳能电池光电性能的影响。具体来说,通过水热法制备了六方相 NaYF4:Yb(3+)/Er(3+) 微晶体,并将其添加到染料敏化太阳能电池的 TiO2 光阳极中。结果表明,TiO2-NaYF4:Yb(3+)/Er(3+) 复合光阳极在 495nm 或 980nm 激发下可以发射可见光,然后可见光可以被染料 N719 吸收,从而提高光捕获效率并提高太阳能电池的效率。在模拟太阳辐射下,在 λ≥400nm 的波长范围内,TiO2-NaYF4:Yb(3+)/Er(3+) 电池的光电转换效率比纯 TiO2 电池提高了 10%。对于相同厚度的电极,添加 NaYF4:Yb(3+)/Er(3+) 后光阳极的染料吸附量略有减少,这归因于光阳极中 TiO2 的减少。通过电化学阻抗谱和强度调制光电流/光电压谱研究了电子输运和界面复合动力学。TiO2-NaYF4:Yb(3+)/Er(3+) 电池的电子复合时间和电子输运时间均长于纯 TiO2 电池。TiO2-NaYF4:Yb(3+)/Er(3+) 电池的电荷收集效率略低于纯 TiO2 电池。此外,TiO2-NaYF4:Yb(3+)/Er(3+) 电池的 TiO2-染料|I3(-)/I(-)电解质界面的界面电阻远大于纯 TiO2 电池。所有这些结果表明,通过添加 NaYF4:Yb(3+)/Er(3+) 并不能改善电荷输运。因此,TiO2-NaYF4:Yb(3+)/Er(3+) 电池光电转换效率的提高与 NaYF4:Yb(3+)/Er(3+) 的双模式发光功能密切相关。