Graduate Institute of Medical Sciences, National Defence Medical Centre, Taipei, ROC, Taiwan.
PLoS One. 2013;8(2):e56331. doi: 10.1371/journal.pone.0056331. Epub 2013 Feb 15.
RhoA/Rho-kinase (RhoA/ROK) pathway promotes vasoconstriction by calcium sensitivity mechanism. LPS causes nitric oxide (NO) overproduction to induce vascular hyporeactivity. Thus, we tried to examine the role of RhoA/ROK and NO in the regulation of vascular reactivity in different time-point of endotoxaemia. Male Wistar rats were intravenously infused for 10 min with saline or E. coli endotoxin (lipopolysaccharide, LPS, 10 mg/kg) and divided to five groups (n = 8 in each group): (i) Control, sacrificed at 6 h after saline infusion; (ii) LPS1h, sacrificed at 1 h after LPS infusion; (iii) LPS2h, sacrificed at 2 h after LPS infusion; (iv) LPS4h, sacrificed at 4 h after LPS infusion; and (v) LPS6h, sacrificed at 6 h after LPS infusion. LPS1h and LPS2h were regarded as early endotoxaemia, whereas LPS4h and LPS6h were regarded as late endotoxaemia. Indeed, our results showed that LPS reproduced a biphasic hypotension and sustained vascular hyporeactivity to noradrenaline (NA) in vivo. Interestingly, this hyporeactivity did not occur in ex vivo during early endotoxaemia. This could be due to increases of aortic RhoA activity (n = 5, P<0.05) and myosin phosphatase targeting subunit 1 phosphorylation (n = 3, P<0.05). In addition, pressor response to NA and vascular reactivity in early endotoxaemia were inhibited by ROK inhibitor, Y27632. Furthermore, plasma bradykinin was increased at 10 min (24.6±13.7 ng/mL, n = 5, P<0.05) and aortic endothelial NO synthase expression was increased at 1 h (+200%. n = 3, P<0.05) after LPS. In late endotoxaemia, the vascular hyporeactivity was associated with aortic inducible NO synthase expression (n = 3, P<0.05) and an increased serum NO level (n = 8, P<0.05). Thus, an increased RhoA activity could compensate vascular hyporeactivity in early endotoxaemia, and the large NO production inhibiting RhoA activity would lead to vascular hyporeactivity eventually.
RhoA/Rho-kinase (RhoA/ROK) 通路通过钙敏感性机制促进血管收缩。LPS 导致一氧化氮 (NO) 产生过多,引起血管反应性降低。因此,我们试图在不同的内毒素血症时间点检查 RhoA/ROK 和 NO 在血管反应性调节中的作用。雄性 Wistar 大鼠静脉内输注生理盐水或大肠杆菌内毒素(脂多糖,LPS,10mg/kg)10 分钟,并分为五组(每组 8 只):(i)对照组,在生理盐水输注后 6 小时处死;(ii)LPS1h 组,在 LPS 输注后 1 小时处死;(iii)LPS2h 组,在 LPS 输注后 2 小时处死;(iv)LPS4h 组,在 LPS 输注后 4 小时处死;(v)LPS6h 组,在 LPS 输注后 6 小时处死。LPS1h 和 LPS2h 被视为早期内毒素血症,而 LPS4h 和 LPS6h 被视为晚期内毒素血症。事实上,我们的结果表明 LPS 在体内复制了双相低血压和持续的去甲肾上腺素(NA)引起的血管反应性降低。有趣的是,这种反应性在早期内毒素血症期间不会在离体发生。这可能是由于主动脉 RhoA 活性增加(n=5,P<0.05)和肌球蛋白磷酸酶靶向亚单位 1 磷酸化增加(n=3,P<0.05)。此外,ROK 抑制剂 Y27632 抑制了早期内毒素血症中的 NA 加压反应和血管反应性。此外,LPS 后 10 分钟血浆缓激肽增加(24.6±13.7ng/mL,n=5,P<0.05),LPS 后 1 小时主动脉内皮型一氧化氮合酶表达增加(+200%,n=3,P<0.05)。在内毒素血症晚期,血管反应性降低与主动脉诱导型一氧化氮合酶表达(n=3,P<0.05)和血清 NO 水平升高(n=8,P<0.05)有关。因此,RhoA 活性的增加可以补偿早期内毒素血症中的血管反应性降低,而大量的 NO 产生抑制 RhoA 活性最终会导致血管反应性降低。