Dürr Katharina L, Tavraz Neslihan N, Spiller Susan, Friedrich Thomas
Institute of Chemistry, Technical University of Berlin, Germany.
J Vis Exp. 2013 Feb 19(72):e50201. doi: 10.3791/50201.
Whereas cation transport by the electrogenic membrane transporter Na(+),K(+)-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H(+),K(+)-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb(+) or Li(+) transport by Na(+),K(+)- or gastric H(+),K(+)-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb(+) (Li(+)) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb(+) uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na(+)/2K(+) transport stoichiometry of the Na(+),K(+)-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H(+),K(+)-ATPase. In principle, the assay is not limited to K(+)-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
虽然通过电生膜转运蛋白钠钾ATP酶进行的阳离子转运可以通过电生理学方法进行测量,但电中性运作的胃质子钾ATP酶却更难研究。许多转运分析方法利用放射性同位素来获得足够的信噪比,然而,必要的安全措施对人体暴露或分析设计施加了严格限制。此外,跨细胞膜的离子转运受到膜电位的严重影响,而在细胞培养或蛋白脂质体制备中,膜电位并非能直接得到控制。在此,我们利用原子吸收分光光度法(AAS)对痕量化学元素的卓越灵敏度,来测量单细胞中钠钾ATP酶或胃质子钾ATP酶介导的铷离子或锂离子转运。以非洲爪蟾卵母细胞作为表达系统,我们通过在配备横向加热石墨原子化器(THGA)炉的AAS装置中测量单卵母细胞匀浆样品,来确定转运进入细胞的铷离子(锂离子)量,该装置由自动进样器进样。由于对照卵母细胞中非特异性摄取铷离子的背景或在应用ATP酶特异性抑制剂期间的背景非常小,因此可以同时实施涉及大量实验条件的复杂动力学分析方案,或者高精度地比较位点特异性突变转运蛋白的转运能力和动力学。此外,由于阳离子摄取是在单细胞上测定的,通量实验可以与双电极电压钳制(TEVC)相结合进行,以实现对膜电位和电流的精确控制。这使得例如能够定量确定钠钾ATP酶的3个钠离子/2个钾离子转运化学计量,并首次能够研究电中性运作的胃质子钾ATP酶介导的阳离子转运的电压依赖性。原则上,该分析方法不仅限于钾离子转运膜蛋白,对于研究重金属或过渡金属转运蛋白的活性,或通过内吞过程摄取化学元素,可能同样有效。