Ferrari Gianfranco, Kozarski Maciej, Fresiello Libera, Di Molfetta Arianna, Zieliński Krzysztof, Górczyńska Krystyna, Pałko Krzysztof J, Darowski Marek
Institute of Clinical Physiology, Section of Rome, Rome, Italy.
J Artif Organs. 2013 Jun;16(2):149-56. doi: 10.1007/s10047-013-0691-7. Epub 2013 Mar 5.
This model study evaluates the effect of pump characteristics and cardiovascular data on hemodynamics in atrio-aortic VAD assistance. The model includes a computational circulatory sub-model and an electrical sub-model representing two rotary blood pumps through their pressure-flow characteristics. The first is close to a pressure generator-PG (average flow sensitivity to pressure variations, -0.047 l mmHg(-1)); the second is closer to a flow generator-FG (average flow sensitivity to pressure variations, -0.0097 l mmHg(-1)). Interaction with VAD was achieved by means of two interfaces, behaving as impedance transformers. The model was verified by use of literature data and VAD onset conditions were used as a control for the experiments. Tests compared the two pumps, at constant pump speed, in different ventricular and circulatory conditions: maximum ventricular elastance (0.44-0.9 mmHg cm(-3)), systemic peripheral resistance (781-1200 g cm(-4) s(-1)), ventricular diastolic compliance C p (5-10-50 cm(3) mmHg(-1)), systemic arterial compliance (0.9-1.8 cm(3) mmHg(-1)). Analyzed variables were: arterial and venous pressures, flows, ventricular volume, external work, and surplus hemodynamic energy (SHE). The PG pump generated the highest SHE under almost all conditions, in particular for higher C p (+50 %). PG pump flow is also the most sensitive to E max and C p changes (-26 and -33 %, respectively). The FG pump generally guarantees higher external work reduction (54 %) and flow less dependent on circulatory and ventricular conditions. The results are evidence of the importance of pump speed regulation with changing ventricular conditions. The computational sub-model will be part of a hydro-numerical model, including autonomic controls, designed to test different VADs.
本模型研究评估了泵特性和心血管数据对主动脉-心房心室辅助装置(atrio-aortic VAD)辅助下血流动力学的影响。该模型包括一个计算循环子模型和一个电学子模型,通过其压力-流量特性来表示两个旋转血泵。第一个接近压力发生器-PG(流量对压力变化的平均敏感度为-0.047 l mmHg⁻¹);第二个更接近流量发生器-FG(流量对压力变化的平均敏感度为-0.0097 l mmHg⁻¹)。通过两个作为阻抗变压器的接口实现与VAD的相互作用。该模型通过文献数据进行了验证,并将VAD启动条件用作实验对照。测试在不同的心室和循环条件下,以恒定泵速比较了这两种泵:最大心室弹性(0.44 - 0.9 mmHg cm⁻³)、体循环外周阻力(781 - 1200 g cm⁻⁴ s⁻¹)、心室舒张顺应性C p(5 - 10 - 50 cm³ mmHg⁻¹)、体循环动脉顺应性(0.9 - 1.8 cm³ mmHg⁻¹)。分析的变量包括:动脉和静脉压力、流量、心室容积、外部功以及剩余血流能量(SHE)。在几乎所有条件下,PG泵产生的SHE最高,特别是对于较高的C p(增加50%)。PG泵的流量对E max和C p变化也最敏感(分别为-26%和-33%)。FG泵通常能保证更高的外部功降低(54%),且流量对循环和心室条件的依赖性较小。结果证明了随着心室条件变化进行泵速调节的重要性。该计算子模型将成为一个包括自主控制的流体数值模型的一部分,旨在测试不同的VAD。