Suppr超能文献

用于在聚二甲基硅氧烷上对蛋白质和细胞进行简单图案化的片上聚对二甲苯-C 微模板。

On-chip parylene-C microstencil for simple-to-use patterning of proteins and cells on polydimethylsiloxane.

机构信息

Department of Medical System Engineering, School of Mechatronics, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2013 Apr 10;5(7):2658-68. doi: 10.1021/am4001166. Epub 2013 Mar 22.

Abstract

Polydimethylsiloxane (PDMS) is widely used as a substrate in miniaturized devices, given its suitability for execution of biological and chemical assays. Here, we present a patterning approach for PDMS, which uses an on-chip Parylene-C microstencil to pattern proteins and cells. To implement the on-chip Parylene-C microstencil, we applied SiOx-like nanoparticle layers using atmospheric-pressure plasma-enhanced chemical vapor deposition (AP-PECVD) of tetraethyl orthosilicate (TEOS) mixed with oxygen. The complete removal of Parylene-C from PDMS following application of SiOx-like nanoparticle layers was demonstrated by various surface characterization analysis, including optical transparency, surface morphology, chemical composition, and peel-off force. Furthermore, the effects of the number of AP-PECVD treatments were investigated. Our approach overcomes the tendency of Parylene-C to peel off incompletely from PDMS, which has limited its use with PDMS to date. The on-chip Parylene-C microstencil approach that is based on this Parylene-C peel-off process on PDMS can pattern proteins with 2-μm resolution and cells at single-cell resolution with a vacancy ratio as small as 10%. This provides superior user-friendliness and a greater degree of geometrical freedom than previously described approaches that require meticulous care in handling of stencil. Thus, this patterning method could be applied in various research fields to pattern proteins or cells on the flexible PDMS substrate.

摘要

聚二甲基硅氧烷(PDMS)因其适合执行生物和化学分析而被广泛用作微型设备的基底。在这里,我们提出了一种用于 PDMS 的图案化方法,该方法使用芯片上的聚对二甲苯-C 微模板对蛋白质和细胞进行图案化。为了实现芯片上的聚对二甲苯-C 微模板,我们使用大气压等离子体增强化学气相沉积(AP-PECVD)的四乙氧基硅烷(TEOS)与氧气混合来应用 SiOx 样纳米粒子层。通过各种表面特性分析,包括光学透明度、表面形态、化学成分和剥离力,证明了在 SiOx 样纳米粒子层施加后,PDMS 中完全去除了聚对二甲苯-C。此外,还研究了 AP-PECVD 处理次数的影响。我们的方法克服了聚对二甲苯-C 从 PDMS 不完全剥离的趋势,这限制了其迄今为止与 PDMS 的使用。基于 PDMS 上这种聚对二甲苯-C 剥离工艺的芯片上聚对二甲苯-C 微模板方法可以以 2-μm 的分辨率对蛋白质进行图案化,并以低至 10%的空位率对单细胞进行细胞图案化。与以前需要在微模板处理方面格外小心的描述方法相比,这种方法提供了更好的用户友好性和更大的几何自由度。因此,这种图案化方法可以应用于各种研究领域,在柔性 PDMS 基底上对蛋白质或细胞进行图案化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验