Suppr超能文献

全光谱流式细胞术的优势。

Advantages of full spectrum flow cytometry.

机构信息

Bioscience Division, Los Alamos National Laboratory, P.O. Box 1663, MS M888, Los Alamos, New Mexico 87544, USA.

出版信息

J Biomed Opt. 2013 Mar;18(3):037004. doi: 10.1117/1.JBO.18.3.037004.

Abstract

A charge coupled device-based flow-cytometer for the measurement of full spectra was implemented and characterized. The spectral resolution was better than 1.5 nm and the coefficient of variation for fluorescence from flow check beads was 5% or better. Both cell and bead data were analyzed by fitting to measured component spectra. Separation of flow check and align flow beads, which have similar spectra, was nearly identical whether using a spectral analysis or a scatter analysis. After mixing, cells stained with ethidium bromide or propidium iodide were measured at different timepoints. The contribution of these 12 nm separated emission spectra could be separately quantified and the kinetic process of the samples becoming homogeneous due to fluorophor dissociation and rebinding was observed. Principle component analysis was used to reduce noise and alternating least squares (ALS) was used to analyze one set of noise-reduced cell data without knowledge of the component spectra. The component spectra obtained via ALS are very similar to the measured component spectra. The contributions of ethidium bromide and propidium iodide to the individual spectra are also similar to those obtained via the spectral fitting procedure.

摘要

我们构建并评估了一种基于电荷耦合器件的流式细胞仪,该仪器可用于全光谱测量。其光谱分辨率优于 1.5nm,而对于荧光微球的变异系数则在 5%或更佳。细胞和微球的数据都通过对实测组份光谱进行拟合进行分析。无论使用光谱分析还是散射分析,对于具有相似光谱的流式微球和对齐微球的分离效果都几乎完全一致。在混合之后,我们对用溴化乙锭或碘化丙啶染色的细胞在不同时间点进行测量。可以分别对这两个相隔 12nm 的发射光谱的组份进行定量,并观察到由于荧光染料的离解和重新结合,样品变得均匀的动力学过程。主成分分析(PCA)用于降低噪声,交替最小二乘法(ALS)用于在不了解组份光谱的情况下对一组去噪的细胞数据进行分析。通过 ALS 得到的组份光谱与实测组份光谱非常相似。溴化乙锭和碘化丙啶对各个光谱的贡献也与通过光谱拟合过程得到的结果相似。

相似文献

1
Advantages of full spectrum flow cytometry.
J Biomed Opt. 2013 Mar;18(3):037004. doi: 10.1117/1.JBO.18.3.037004.
3
Fluorescence spectra of DNA dyes measured in a flow cytometer.
Cytometry. 1996 Jul 1;24(3):234-42. doi: 10.1002/(SICI)1097-0320(19960701)24:3<234::AID-CYTO6>3.0.CO;2-H.
4
Phase-resolved fluorescence lifetime measurements for flow cytometry.
Cytometry. 1993;14(2):123-35. doi: 10.1002/cyto.990140204.
5
A flow cytometer for the measurement of Raman spectra.
Cytometry A. 2008 Feb;73(2):119-28. doi: 10.1002/cyto.a.20520.
6
Observation of single-cell fluorescence spectra in laser flow cytometry.
Cytometry. 1996 Dec 1;25(4):388-93. doi: 10.1002/(SICI)1097-0320(19961201)25:4<388::AID-CYTO11>3.0.CO;2-R.
7
Flow cytometric, phase-resolved fluorescence measurement of propidium iodide uptake in macrophages containing phagocytized fluorescent microspheres.
Cytometry. 2000 Jan 1;39(1):45-55. doi: 10.1002/(sici)1097-0320(20000101)39:1<45::aid-cyto7>3.0.co;2-1.
8
Visible and near infrared fluorescence spectral flow cytometry.
Cytometry A. 2013 Mar;83(3):253-64. doi: 10.1002/cyto.a.22241. Epub 2012 Dec 6.
9
Single particle high resolution spectral analysis flow cytometry.
Cytometry A. 2006 Aug 1;69(8):842-51. doi: 10.1002/cyto.a.20320.
10
Study of propidium iodide binding to DNA in intact cells by flow cytometry.
Cell Biophys. 1990 Dec;17(3):257-67. doi: 10.1007/BF02990721.

引用本文的文献

1
A Survey on Core Flow Cytometry Facilities: Instrument Maintenance, Usage, and Funding.
J Biomol Tech. 2023 Nov 30;34(4). doi: 10.7171/3fc1f5fe.557b2117. eCollection 2023 Dec.
2
Using Virtual Filtering Approach to Discriminate Microalgae by Spectral Flow Cytometer.
Methods Mol Biol. 2023;2635:23-40. doi: 10.1007/978-1-0716-3020-4_2.
3
Development of Spectral Imaging Cytometry.
Methods Mol Biol. 2023;2635:3-22. doi: 10.1007/978-1-0716-3020-4_1.
4
Advanced immunophenotyping: A powerful tool for immune profiling, drug screening, and a personalized treatment approach.
Front Immunol. 2023 Mar 24;14:1096096. doi: 10.3389/fimmu.2023.1096096. eCollection 2023.
5
Flow Cytometry Detection of Anthracycline-Treated Breast Cancer Cells: An Optimized Protocol.
Curr Issues Mol Biol. 2022 Dec 28;45(1):164-174. doi: 10.3390/cimb45010013.
6
Full spectrum flow cytometry and mass cytometry: A 32-marker panel comparison.
Cytometry A. 2022 Nov;101(11):942-959. doi: 10.1002/cyto.a.24565. Epub 2022 May 20.
7
The Evolution of Single-Cell Analysis and Utility in Drug Development.
AAPS J. 2021 Aug 13;23(5):98. doi: 10.1208/s12248-021-00633-6.
8
T Lymphocytes and Testicular Immunity: A New Insight into Immune Regulation in Testes.
Int J Mol Sci. 2020 Dec 23;22(1):57. doi: 10.3390/ijms22010057.

本文引用的文献

1
Visible and near infrared fluorescence spectral flow cytometry.
Cytometry A. 2013 Mar;83(3):253-64. doi: 10.1002/cyto.a.22241. Epub 2012 Dec 6.
2
Hyperspectral cytometry at the single-cell level using a 32-channel photodetector.
Cytometry A. 2012 Jan;81(1):35-44. doi: 10.1002/cyto.a.21120. Epub 2011 Aug 30.
4
High-resolution spectral analysis of individual SERS-active nanoparticles in flow.
J Am Chem Soc. 2010 May 5;132(17):6081-90. doi: 10.1021/ja909850s.
5
Spectral measurements of large particles by flow cytometry.
Cytometry A. 2009 May;75(5):460-4. doi: 10.1002/cyto.a.20706.
6
Compensation in flow cytometry.
Curr Protoc Cytom. 2002 Dec;Chapter 1:Unit 1.14. doi: 10.1002/0471142956.cy0114s22.
7
A flow cytometer for the measurement of Raman spectra.
Cytometry A. 2008 Feb;73(2):119-28. doi: 10.1002/cyto.a.20520.
8
8 color, 10-parameter flow cytometry to elucidate complex leukocyte heterogeneity.
Cytometry. 1997 Dec 1;29(4):328-39. doi: 10.1002/(sici)1097-0320(19971201)29:4<328::aid-cyto10>3.0.co;2-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验