Functional Informatics Laboratory National Center for Bioinformatics, Quaid-I-Azam University, Islamabad, Pakistan.
Invest New Drugs. 2013 Oct;31(5):1355-63. doi: 10.1007/s10637-013-9944-9. Epub 2013 Mar 13.
Selectively decreasing the availability of precursors for the de novo biosynthesis of purine nucleotides is a valid approach towards seeking a cure for leukaemia. Nucleotides and deoxynucleotides are required by living cells for syntheses of RNA, DNA, and cofactors such as NADP(+), FAD(+), coenzyme A and ATP. Nucleotides contain purine and pyrimidine bases, which can be synthesized through salvage pathway as well. Amido phosphoribosyltransferase (APRT), also known as glutamine phosphoribosylpyrophosphate amidotransferase (GPAT), is an enzyme that in humans is encoded by the PPAT (phosphoribosyl pyrophosphate amidotransferase) gene. APRT catalyzes the first committed step of the de novo pathway using its substrate, phosphoribosyl pyrophosphate (PRPP). As APRT is inhibited by many folate analogues, therefore, in this study we focused on the inhibitory effects of three folate analogues on APRT activity. This is extension of our previous wet lab work to analyze and dissect molecular interaction and inhibition mechanism using molecular modeling and docking tools in the current study. Comparative molecular docking studies were carried out for three diamino folate derivatives employing a model of the human enzyme that was built using the 3D structure of Bacillus subtilis APRT (PDB ID; 1GPH) as the template. Binding orientation of interactome indicates that all compounds having nominal cluster RMSD in same active site's deep narrow polar fissure. On the basis of comparative conformational analysis, electrostatic interaction, binding free energy and binding orientation of interactome, we support the possibility that these molecules could behave as APRT inhibitors and therefore may block purine de novo biosynthesis. Consequently, we suggest that PY899 is the most active biological compound that would be a more potent inhibitor for APRT inhibition than PY873 and DIA, which also confirms previous wet lab report.
选择性地减少嘌呤核苷酸从头生物合成的前体的可用性是寻求治疗白血病的有效方法。核苷酸和脱氧核苷酸是活细胞合成 RNA、DNA 和辅助因子(如 NADP(+)、FAD(+)、辅酶 A 和 ATP)所必需的。核苷酸含有嘌呤和嘧啶碱基,也可以通过补救途径合成。酰胺磷酸核糖基转移酶(APRT),也称为谷氨酰胺磷酸核糖基焦磷酸酰胺转移酶(GPAT),是一种在人类中由 PPAT(磷酸核糖基焦磷酸酰胺转移酶)基因编码的酶。APRT 利用其底物磷酸核糖基焦磷酸(PRPP)催化从头途径的第一步。由于 APRT 被许多叶酸类似物抑制,因此在本研究中,我们专注于三种叶酸类似物对 APRT 活性的抑制作用。这是我们之前在湿实验室工作的扩展,旨在使用当前研究中的分子建模和对接工具分析和剖析分子相互作用和抑制机制。对三种二氨基叶酸衍生物进行了比较分子对接研究,使用枯草芽孢杆菌 APRT 的 3D 结构(PDB ID;1GPH)作为模板构建了人类酶模型。相互作用体的结合取向表明,所有化合物在相同的活性位点深而窄的极性裂缝中具有名义簇 RMSD。基于比较构象分析、静电相互作用、结合自由能和相互作用体的结合取向,我们支持这些分子可能作为 APRT 抑制剂的可能性,因此可能阻断嘌呤从头生物合成。因此,我们建议 PY899 是最活跃的生物化合物,它比 PY873 和 DIA 更能抑制 APRT 抑制,这也证实了之前的湿实验室报告。