Suppr超能文献

二维随机分布生长簇渗流模型的普适类

Universality class of the two-dimensional randomly distributed growing-cluster percolation model.

作者信息

Melchert O

机构信息

Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022115. doi: 10.1103/PhysRevE.87.022115. Epub 2013 Feb 13.

Abstract

We consider the "Touch and Stop" cluster growth percolation (CGP) model on the two-dimensional square lattice. A key parameter in the model is the fraction p of occupied "seed" sites that act as nucleation centers from which a particular cluster growth procedure is started. Here, we consider two growth styles: rhombic and disk-shaped cluster growth. For intermediate values of p the final state, attained by the growth procedure, exhibits a cluster of occupied sites that span the entire lattice. Using numerical simulations we investigate the percolation probability and the order parameter and perform a finite-size scaling analysis for lattices of side length up to L=1024 in order to carefully determine the critical exponents that govern the respective transition. In contrast to previous studies, reported in Tsakiris et al. [Phys. Rev. E 82, 041108 (2010)], we find strong numerical evidence that the CGP model is in the standard percolation universality class.

摘要

我们考虑二维正方形晶格上的“接触并停止”簇生长渗流(CGP)模型。该模型中的一个关键参数是被占据的“种子”位点的比例(p),这些位点充当成核中心,从这些中心开始特定的簇生长过程。在这里,我们考虑两种生长方式:菱形和盘状簇生长。对于(p)的中间值,生长过程达到的最终状态呈现出一个跨越整个晶格的被占据位点的簇。我们使用数值模拟来研究渗流概率和序参量,并对边长最大为(L = 1024)的晶格进行有限尺寸标度分析,以便仔细确定控制各自转变的临界指数。与Tsakiris等人[《物理评论E》82,041108(2010)]报道的先前研究不同,我们发现有力的数值证据表明CGP模型属于标准渗流普适类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验