Mejdoubi A, Andraud C, Berthier S, Lafait J, Boulenguez J, Richalot E
Institut des Nanosciences de Paris, UMR 7588 CNRS - Université Pierre et Marie Curie, Paris 6, Case 840, Campus Jussieu, 4 place Jussieu, 75252 Paris Cedex 05, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022705. doi: 10.1103/PhysRevE.87.022705. Epub 2013 Feb 13.
With the aim of furthering the explanation of iridescence in Morpho butterflies, we developed an optical model based on the finite-element (FE) method, taking more accurately into account the exact morphology of the wing, origin of iridescence. We modeled the photonic structure of a basal scale of the Morpho rhetenor wing as a three-dimensional object, infinite in one direction, with a shape copied from a TEM image, and made out of a slightly absorbing dielectric material. Periodic boundary conditions were used in the FE method to model the wing periodic structure and perfectly matched layers permitted the free-space scattering computation. Our results are twofold: first, we verified on a simpler structure, that our model yields the same result as the rigorous coupled wave analysis (RCWA), and second, we demonstrated that it is necessary to assume an absorption gradient in the true structure, to account for experimental reflectivity measured on a real wing.
为了进一步解释大闪蝶翅膀上的虹彩现象,我们基于有限元方法开发了一种光学模型,更精确地考虑了翅膀的精确形态以及虹彩的起源。我们将光明女神闪蝶翅膀基部鳞片的光子结构建模为一个三维物体,在一个方向上是无限的,其形状从透射电子显微镜图像复制而来,由一种略有吸收的介电材料制成。在有限元方法中使用周期性边界条件来模拟翅膀的周期性结构,并且完全匹配层允许进行自由空间散射计算。我们的结果有两方面:第一,我们在一个更简单的结构上验证了我们的模型与严格耦合波分析(RCWA)产生相同的结果;第二,我们证明了在真实结构中必须假设存在吸收梯度,才能解释在真实翅膀上测量到的实验反射率。