Instituto de Síntesis Química y Catálisis Homogénea ISQCH, Universidad de Zaragoza-CSIC, Zaragoza, Spain.
Chemistry. 2013 Apr 26;19(18):5665-75. doi: 10.1002/chem.201204391. Epub 2013 Mar 15.
The ready availability of rare parent amido d(8) complexes of the type [{M(μ-NH2)(cod)}2] (M=Rh (1), Ir (2); cod=1,5-cyclooctadiene) through the direct use of gaseous ammonia has allowed the study of their reactivity. Both complexes 1 and 2 exchanged the di-olefines by carbon monoxide to give the dinuclear tetracarbonyl derivatives [{M(μ-NH2)(CO)2}2 ] (M=Rh or Ir). The diiridium(I) complex 2 reacted with chloroalkanes such as CH2Cl2 or CHCl3, giving the diiridium(II) products [(Cl)(cod)Ir(μ-NH2)2Ir(cod)(R)] (R=CH2Cl or CHCl2) as a result of a two-center oxidative addition and concomitant metal-metal bond formation. However, reaction with ClCH2CH2Cl afforded the symmetrical adduct [{Ir(μ-NH2)(Cl)(cod)}2] upon release of ethylene. We found that the rhodium complex 1 exchanged the di-olefines stepwise upon addition of selected phosphanes (PPh3, PMePh2, PMe2Ph) without splitting of the amido bridges, allowing the detection of mixed COD/phosphane dinuclear complexes [(cod)Rh(μ-NH2)2Rh(PR3)2], and finally the isolation of the respective tetraphosphanes [{Rh(μ-NH2)(PR3)2}2]. On the other hand, the iridium complex 2 reacted with PMe2 Ph by splitting the amido bridges and leading to the very rare terminal amido complex [Ir(cod)(NH2)(PMePh2)2]. This compound was found to be very reactive towards traces of water, giving the more stable terminal hydroxo complex [Ir(cod)(OH)(PMePh2)2]. The heterocyclic carbene IPr (IPr=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) also split the amido bridges in complexes 1 and 2, allowing in the case of iridium to characterize in situ the terminal amido complex [Ir(cod)(IPr)(NH2)]. However, when rhodium was involved, the known hydroxo complex [Rh(cod)(IPr)(OH)] was isolated as final product. On the other hand, we tested complexes 1 and 2 as catalysts in the transfer hydrogenation of acetophenone with iPrOH without the use of any base or in the presence of Cs2CO3, finding that the iridium complex 2 is more active than the rhodium analogue 1.
通过直接使用气态氨,可获得类型为 [{M(μ-NH2)(cod)}2](M=Rh(1),Ir(2);cod=1,5-环辛二烯)的稀有双亲酰胺 d(8) 配合物,从而可以研究它们的反应性。两种配合物 1 和 2 通过一氧化碳交换二烯烃,得到双核四羰基衍生物 [{M(μ-NH2)(CO)2}2](M=Rh 或 Ir)。二铱(I)配合物 2 与氯代烷烃(如 CH2Cl2 或 CHCl3)反应,生成二铱(II)产物 [(Cl)(cod)Ir(μ-NH2)2Ir(cod)(R)](R=CH2Cl 或 CHCl2),这是由于双中心氧化加成和伴随的金属-金属键形成。然而,与 ClCH2CH2Cl 反应释放乙烯后得到对称加合物 [{Ir(μ-NH2)(Cl)(cod)}2]。我们发现,当加入选定的膦(PPh3、PMePh2、PMe2Ph)时,1 型配合物逐步交换二烯烃,而酰胺桥不分裂,允许检测混合 COD/膦双核配合物 [(cod)Rh(μ-NH2)2Rh(PR3)2],最后分离出相应的四膦 [{Rh(μ-NH2)(PR3)2}2]。另一方面,2 型铱配合物通过分裂酰胺桥与 PMe2Ph 反应,导致非常罕见的末端酰胺配合物 [Ir(cod)(NH2)(PMePh2)2]。该化合物对痕量水非常反应,生成更稳定的末端羟基配合物 [Ir(cod)(OH)(PMePh2)2]。杂环卡宾 IPr(IPr=1,3-双(2,6-二异丙基苯基)咪唑-2-亚基)也在配合物 1 和 2 中分裂酰胺桥,在铱的情况下允许原位表征末端酰胺配合物 [Ir(cod)(IPr)(NH2)]。然而,当涉及到铑时,分离出已知的羟基配合物 [Rh(cod)(IPr)(OH)]作为最终产物。另一方面,我们在没有使用任何碱或在 Cs2CO3 存在下,测试了配合物 1 和 2 作为苯乙酮转移氢化的催化剂用 iPrOH,发现铱配合物 2 比铑类似物 1 更活跃。