Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia.
Integr Biol (Camb). 2013 May;5(5):796-806. doi: 10.1039/c3ib20221f.
As the first, and usually rate-limiting, step of transcription initiation, bacterial RNA polymerase (RNAP) binds to double stranded DNA (dsDNA) and subsequently opens the two strands of DNA (the open complex formation). The rate determining step in the open complex formation is opening of a short (6 bp) DNA called the -10 region, which interacts with RNAP in both dsDNA and single stranded (ssDNA) forms. Accordingly, formation of the open complex depends on (physically independent) domains of RNAP that interact with ssDNA and dsDNA, as well as on parameters of DNA melting and sequences of -10 regions. We here aim to understand how these different interactions are mutually related to ensure efficient open complex formation. To achieve this, we use a recently developed biophysical model of transcription initiation, which allows the calculation of the kinetic parameters of transcription initiation on the scale of whole genome. We consequently investigate kinetic properties of sequences derived from all E. coli intergenic regions, and from more than 300 experimentally confirmed E. coli σ(70) promoters. We find that interaction specificities of σ(70) DNA binding domains reduce the number of sequences where RNAP binds strongly, but forms the open complex too slowly to achieve functional transcription (so-called poised promoters). However, we find that, despite this reduction, there is still a significant number of such poised promoters in the intergenic regions, which may provide a major source of false positives in genome-wide searches of transcription start sites. Furthermore, we surprisingly find that sequences of -10 regions of the functional promoters increase the extent of RNAP poising, which we interpret in terms of an extension of a recently proposed model of promoter recognition ('mix-and-match model') to kinetic parameters. Overall, our results allow better understanding of the design of σ(70) DNA binding domains and promoter sequences, and place a fundamental limit on accuracy of methods for promoter detection that are based on strong RNAP binding (e.g. ChIP-chip).
作为转录起始的第一步,也是通常的限速步骤,细菌 RNA 聚合酶 (RNAP) 与双链 DNA (dsDNA) 结合,随后打开 DNA 的两条链(开放复合物形成)。开放复合物形成的速率决定步骤是打开一个短的(6bp)DNA,称为-10 区,它在双链 DNA (dsDNA) 和单链 (ssDNA) 形式中与 RNAP 相互作用。因此,开放复合物的形成取决于与 ssDNA 和 dsDNA 相互作用的 RNAP 的(物理上独立的)结构域,以及 DNA 融化的参数和-10 区的序列。在这里,我们旨在了解这些不同的相互作用是如何相互关联的,以确保有效的开放复合物形成。为了实现这一目标,我们使用了最近开发的转录起始生物物理模型,该模型允许在整个基因组范围内计算转录起始的动力学参数。我们随后研究了来自所有大肠杆菌基因间区和 300 多个经实验证实的大肠杆菌 σ(70)启动子的序列的动力学特性。我们发现,σ(70)DNA 结合结构域的相互作用特异性减少了 RNAP 强烈结合的序列数量,但形成开放复合物的速度太慢,无法实现功能性转录(所谓的有潜力的启动子)。然而,我们发现,尽管这种减少,基因间区仍然存在大量的这种有潜力的启动子,这可能是全基因组转录起始位点搜索中假阳性的主要来源。此外,我们令人惊讶地发现,功能启动子的-10 区序列增加了 RNAP 有潜力的程度,我们根据最近提出的启动子识别模型(“混合匹配模型”)来解释这种增加。总的来说,我们的结果使我们能够更好地理解 σ(70)DNA 结合结构域和启动子序列的设计,并对基于 RNAP 强烈结合的启动子检测方法的准确性设置了基本限制(例如 ChIP-chip)。