Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America.
PLoS One. 2013;8(3):e58532. doi: 10.1371/journal.pone.0058532. Epub 2013 Mar 14.
All genes in the TRIM6/TRIM34/TRIM5/TRIM22 locus are type I interferon inducible, with TRIM5 and TRIM22 possessing antiviral properties. Evolutionary studies involving the TRIM6/34/5/22 locus have predominantly focused on the coding sequence of the genes, finding that TRIM5 and TRIM22 have undergone high rates of both non-synonymous nucleotide replacements and in-frame insertions and deletions. We sought to understand if divergent evolutionary pressures on TRIM6/34/5/22 coding regions have selected for modifications in the non-coding regions of these genes and explore whether such non-coding changes may influence the biological function of these genes. The transcribed genomic regions, including the introns, of TRIM6, TRIM34, TRIM5, and TRIM22 from ten Haplorhini primates and one prosimian species were analyzed for transposable element content. In Haplorhini species, TRIM5 displayed an exaggerated interspecies variability, predominantly resulting from changes in the composition of transposable elements in the large first and fourth introns. Multiple lineage-specific endogenous retroviral long terminal repeats (LTRs) were identified in the first intron of TRIM5 and TRIM22. In the prosimian genome, we identified a duplication of TRIM5 with a concomitant loss of TRIM22. The transposable element content of the prosimian TRIM5 genes appears to largely represent the shared Haplorhini/prosimian ancestral state for this gene. Furthermore, we demonstrated that one such differentially fixed LTR provides for species-specific transcriptional regulation of TRIM22 in response to p53 activation. Our results identify a previously unrecognized source of species-specific variation in the antiviral TRIM genes, which can lead to alterations in their transcriptional regulation. These observations suggest that there has existed long-term pressure for exaptation of retroviral LTRs in the non-coding regions of these genes. This likely resulted from serial viral challenges and provided a mechanism for rapid alteration of transcriptional regulation. To our knowledge, this represents the first report of persistent evolutionary pressure for the capture of retroviral LTR insertions.
TRIM6/34/5/22 基因座中的所有基因都可被 I 型干扰素诱导,TRIM5 和 TRIM22 具有抗病毒特性。涉及 TRIM6/34/5/22 基因座的进化研究主要集中在基因的编码序列上,发现 TRIM5 和 TRIM22 经历了大量非同义核苷酸替换和框内插入和缺失。我们试图了解对 TRIM6/34/5/22 编码区的不同进化压力是否选择了这些基因的非编码区的修饰,并探讨这种非编码变化是否可能影响这些基因的生物学功能。分析了来自 10 种灵长类动物和 1 种原猴物种的 TRIM6、TRIM34、TRIM5 和 TRIM22 的转录基因组区域,包括内含子,以分析转座元件的含量。在灵长类动物物种中,TRIM5 表现出物种间明显的变异性,主要是由于大的第一和第四内含子中转座元件的组成发生了变化。在 TRIM5 和 TRIM22 的第一内含子中鉴定出多个谱系特异性内源性逆转录病毒长末端重复序列(LTR)。在原猴基因组中,我们发现 TRIM5 发生了重复,同时 TRIM22 丢失了。该原猴 TRIM5 基因的转座元件含量似乎主要代表了该基因的灵长类/原猴祖先共同状态。此外,我们证明,一个这样的差异固定 LTR 提供了针对 p53 激活的 TRIM22 的物种特异性转录调节。我们的研究结果确定了抗病毒 TRIM 基因中以前未被认识到的物种特异性变异来源,这可能导致其转录调节的改变。这些观察结果表明,在这些基因的非编码区中,逆转录病毒 LTR 的适应进化长期存在压力。这可能是由于连续的病毒挑战,并为快速改变转录调节提供了一种机制。据我们所知,这代表了对逆转录病毒 LTR 插入的捕获持续进化压力的首次报道。