Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia.
Immunology. 2013 Jul;139(3):285-93. doi: 10.1111/imm.12100.
T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation.
T 细胞能够快速响应病原体,并且已被证明是探索诱导基因调控的一个有指导意义的模型。单个基因对抗原刺激的反应方式不同,很明显,转录因子和单个基因的染色质平台之间的相互作用控制着这些反应。近年来,我们对染色质平台的复杂性以及有助于转录控制的表观遗传机制的理解有了显著的扩展。这些机制包括组蛋白修饰标记的存在/缺失,这些标记形成了一个表观遗传特征来标记活性或非活性基因。这些特征由表观遗传酶动态添加或去除,包括一系列组蛋白修饰酶,包括最近被识别的与染色质相关的信号激酶。此外,染色质重塑复合物通过物理改变染色质结构来调节转录调控因子对染色质的可及性。全基因组技术的出现使我们能够根据组蛋白占有率、组蛋白修饰模式以及转录因子与特定基因组调控区域的关联来描述 T 细胞的染色质景观,从而描绘出 T 细胞的表观基因组。在这里,我们讨论了免疫系统中诱导基因表达的多层次调控,重点关注转录因子之间的相互作用以及 T 细胞表观基因组,包括染色质重塑因子和表观遗传酶的作用。我们还将使用 IL2,T 细胞中关键的诱导细胞因子基因,作为不同层次的表观遗传机制如何在 T 细胞激活过程中调节免疫反应基因的一个例子。