Smithsonian Tropical Research Institute, Ancón, Panama.
Am Nat. 2013 Apr;181(4):E68-82. doi: 10.1086/669678. Epub 2013 Feb 21.
Ecological spatial patterns are structured by a multiplicity of processes acting over a wide range of scales. We propose a new method, based on the scalewise variance--that is, the variance as a function of spatial scale, calculated here with wavelet kernel functions--to disentangle the signature of processes that act at different and similar scales on observed spatial patterns. We derive exact and approximate analytical solutions for the expected scalewise variance under different individual-based, spatially explicit models for sessile organisms (e.g., plants), using moment equations. We further determine the probability distribution of independently observed scalewise variances for a given expectation, including complete spatial randomness. Thus, we provide a new analytical test of the null model of spatial randomness to understand at which scales, if any, the variance departs significantly from randomness. We also derive the likelihood function that is needed to estimate parameters of spatial models and their uncertainties from observed patterns. The methods are demonstrated through numerical examples and case studies of four tropical tree species on Barro Colorado Island, Panama. The methods developed here constitute powerful new tools for investigating effects of ecological processes on spatial point patterns and for statistical inference of process models from spatial patterns.
生态空间格局是由多种作用于广泛尺度的过程构成的。我们提出了一种新的方法,该方法基于尺度方差——即方差作为空间尺度的函数,这里使用小波核函数进行计算——以分解在观察到的空间格局上以不同和相似尺度作用的过程的特征。我们使用矩方程为固着生物(例如植物)的不同基于个体的、空间显式模型推导了尺度方差的预期的精确和近似解析解。我们进一步确定了给定期望下独立观察到的尺度方差的概率分布,包括完全空间随机性。因此,我们提供了对空间随机性零模型的新的分析检验,以了解方差在哪些尺度上显著偏离随机性(如果有的话)。我们还推导出了似然函数,该函数用于从观察到的模式中估计空间模型及其不确定性的参数。该方法通过数值示例和巴拿马巴罗科罗拉多岛的四种热带树种的案例研究得到了验证。这里开发的方法构成了研究生态过程对空间点格局的影响以及从空间格局进行过程模型的统计推断的强大新工具。