Shahmiri Reza, Aarts John M, Bennani Vincent, Atieh Momen A, Swain Michael V
Private practice, Auckland, New Zealand.
Department of Oral Rehabilitation, University of Otago, Dunedin, New Zealand.
J Prosthodont. 2013 Oct;22(7):550-555. doi: 10.1111/jopr.12031. Epub 2013 Apr 1.
This study analyzes the effects of loading a Kennedy class I implant-assisted removable partial denture (IARPD) using finite element analysis (FEA). Standard RPDs are not originally designed to accommodate a posterior implant load point. The null hypothesis is that the introduction of posteriorly placed implants into an RPD has no effect on the load distribution.
A Faro Arm scan was used to extract the geometrical data of a human partially edentulous mandible. A standard plus regular neck (4.8 × 12 mm) Straumann® implant and titanium matrix, tooth roots, and periodontal ligaments were modeled using a combination of reverse engineering in Rapidform XOR2 and solid modeling in Solidworks 2008 FEA program. The model incorporated an RPD and was loaded with a bilateral force of 120 N. ANSYS Workbench 11.0 was used to analyze deformation in the IARPD and elastic strain in the metal framework.
FEA identified that the metal framework developed high strain patterns on the major and minor connectors, and the acrylic was subjected to deformation, which could lead to acrylic fractures. The ideal position of the neutral axis was calculated to be 0.75 mm above the ridge.
A potentially destructive mismatch of strain distribution was identified between the acrylic and metal framework, which could be a factor in the failure of the acrylic. The metal framework showed high strain patterns on the major and minor connectors around the teeth, while the implant components transferred the load directly to the acrylic.
本研究采用有限元分析(FEA)来分析加载肯尼迪I类种植体辅助可摘局部义齿(IARPD)的效果。标准可摘局部义齿(RPD)最初并非设计用于适应后牙种植体的加载点。零假设是在RPD中引入后置种植体对载荷分布没有影响。
使用法如臂扫描仪提取人类部分缺牙下颌骨的几何数据。采用Rapidform XOR2中的逆向工程与Solidworks 2008有限元分析程序中的实体建模相结合的方法,对标准加常规颈部(4.8×12毫米)的士卓曼种植体、钛基体、牙根和牙周韧带进行建模。该模型包含一个RPD,并施加120 N的双侧力。使用ANSYS Workbench 11.0分析IARPD中的变形以及金属框架中的弹性应变。
有限元分析表明,金属框架在大连接体和小连接体上出现高应变模式,并且丙烯酸树脂发生变形,这可能导致丙烯酸树脂断裂。中性轴的理想位置经计算为牙槽嵴上方0.75毫米。
在丙烯酸树脂和金属框架之间发现了潜在的应变分布破坏性不匹配,这可能是丙烯酸树脂失效的一个因素。金属框架在牙齿周围的大连接体和小连接体上显示出高应变模式,而种植体部件将载荷直接传递至丙烯酸树脂。