Microsc Res Tech. 2013 Jun;76(6):559-63. doi: 10.1002/jemt.22205. Epub 2013 Mar 30.
Diagnostic hysteroscopy is a popular method for investigating the regions in the female reproductive system. The videos generated by hysteroscopy sessions of patients are recurrently archived in medical libraries. Gynecologists often need to browse these libraries in search of similar cases or for reviewing old videos of a patient. Diagnostic hysteroscopy videos contain a lot of information with abundant redundancy. Key frame extraction-based video summarization can be used to reduce this huge amount of data. Moreover, key frames can be used for browsing and indexing of hysteroscopy videos. In this article, a domain specific visual attention driven framework for summarization of hysteroscopy videos is proposed. The visual attention model is materialized by computing saliency based on color, texture, and motion. The experimental results, in comparison with other techniques, demonstrate the efficacy of the proposed framework.
诊断性宫腔镜检查是一种常用于检查女性生殖系统区域的方法。患者宫腔镜检查生成的视频经常被存档在医学库中。妇科医生经常需要浏览这些库,以寻找类似的病例或查看患者的旧视频。诊断性宫腔镜检查视频包含大量冗余信息。基于关键帧提取的视频摘要可以用于减少大量的数据。此外,关键帧还可用于浏览和索引宫腔镜检查视频。本文提出了一种特定于领域的视觉注意力驱动的宫腔镜检查视频摘要框架。该视觉注意力模型通过基于颜色、纹理和运动的显著度计算来实现。与其他技术的实验结果比较表明,所提出的框架是有效的。