Department of Cell and Developmental Biology, Oregon Health & Science University , Portland, Oregon 97239, United States.
Biochemistry. 2013 May 14;52(19):3310-9. doi: 10.1021/bi4000063. Epub 2013 Apr 30.
Transferrin receptor 2 (TfR2) is a member of the transferrin receptor-like family of proteins. Mutations in TfR2 can lead to a rare form of the iron overload disease, hereditary hemochromatosis. TfR2 is proposed to sense body iron levels and increase the level of expression of the iron regulatory hormone, hepcidin. Human TfR2 (hTfR2) contains four potential Asn-linked (N-linked) glycosylation sites on its ectodomain. The importance of glycosylation in TfR2 function has not been elucidated. In this study, by employing site-directed mutagenesis to remove glycosylation sites of hTfR2 individually or in combination, we found that hTfR2 was glycosylated at Asn 240, 339, and 754, while the consensus sequence for N-linked glycosylation at Asn 540 was not utilized. Cell surface protein biotinylation and biotin-labeled Tf indicated that in the absence of N-linked oligosaccharides, hTfR2 still moved to the plasma membrane and bound its ligand, holo-Tf. However, without N-linked glycosylation, hTfR2 did not form the intersubunit disulfide bonds as efficiently as the wild type (WT). Moreover, the unglycosylated form of hTfR2 could not be stabilized by holo-Tf. We further provide evidence that the unglycosylated hTfR2 behaved in manner different from that of the WT in response to holo-Tf treatment. Thus, the putative iron-sensing function of TfR2 could not be achieved in the absence of N-linked oligosaccharides. On the basis of our analyses, we conclude that unlike TfR1, N-linked glycosylation is dispensable for the cell surface expression and holo-Tf binding, but it is required for efficient intersubunit disulfide bond formation and holo-Tf-induced stabilization of TfR2.
转铁蛋白受体 2(TfR2)是转铁蛋白受体样蛋白家族的一员。TfR2 突变可导致一种罕见的铁过载疾病——遗传性血色素沉着症。TfR2 被认为可以感知体内铁水平,并增加铁调节激素——hepcidin 的表达水平。人 TfR2(hTfR2)在其胞外域含有四个潜在的天冬酰胺连接(N-连接)糖基化位点。糖基化在 TfR2 功能中的重要性尚未阐明。在这项研究中,我们通过定点突变分别或组合去除 hTfR2 的糖基化位点,发现 hTfR2 在天冬酰胺 240、339 和 754 处发生糖基化,而天冬酰胺 540 处的 N-连接糖基化保守序列未被利用。细胞表面蛋白生物素化和生物素标记的 Tf 表明,在没有 N-连接寡糖的情况下,hTfR2 仍然能够转运到质膜并结合其配体——全铁转铁蛋白。然而,没有 N-糖基化,hTfR2 形成亚基间二硫键的效率不如野生型(WT)。此外,未糖基化的 hTfR2 不能被全铁转铁蛋白稳定。我们进一步提供证据表明,未糖基化的 hTfR2 在响应全铁转铁蛋白处理时的行为与 WT 不同。因此,在缺乏 N-连接寡糖的情况下,TfR2 的潜在铁感应功能无法实现。基于我们的分析,我们得出结论,与 TfR1 不同,N-连接糖基化对于 hTfR2 的细胞表面表达和全铁转铁蛋白结合不是必需的,但对于亚基间二硫键的有效形成和全铁转铁蛋白诱导的 hTfR2 稳定是必需的。