Laboratoire de Physique Théorique, Faculté de Physique, USTHB, BP 32 El Alia, Bab Ezzouar 16111, Algeria.
J Acoust Soc Am. 2013 Apr;133(4):1867-81. doi: 10.1121/1.4792721.
A temporal model based on the Biot theory is developed to describe the transient ultrasonic propagation in porous media with elastic structure, in which the viscous exchange between fluid and structure are described by fractional derivatives. The fast and slow waves obey a fractional wave equation in the time domain. The solution of Biot's equations in time depends on the Green functions of each of the waves (fast and slow), and their fractional derivatives. The reflection and transmission operators for a slab of porous materials are derived in the time domain, using calculations in the Laplace domain. Their analytical expressions, depend on Green's function of fast and slow waves. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.
基于 Biot 理论的瞬态模型被开发出来,用于描述具有弹性结构的多孔介质中的瞬态超声波传播,其中流体和结构之间的粘性交换由分数导数描述。快波和慢波在时域中遵循分数波动方程。Biot 方程在时间上的解取决于每个波(快波和慢波)及其分数导数的格林函数。利用拉普拉斯域中的计算,在时域中推导出多孔材料板的反射和透射算子。它们的解析表达式取决于快波和慢波的格林函数。通过人体松质骨样本传播的慢波和快波的实验结果给出,并与理论预测进行比较。