Suppr超能文献

减少 k 空间采集对容积磁共振波谱成像病理检测能力的影响。

Impact of reduced k-space acquisition on pathologic detectability for volumetric MR spectroscopic imaging.

机构信息

Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA.

出版信息

J Magn Reson Imaging. 2014 Jan;39(1):224-34. doi: 10.1002/jmri.24130. Epub 2013 Apr 4.

Abstract

PURPOSE

To assess the impact of accelerated acquisitions on the spectral quality of volumetric magnetic resonance spectroscopic imaging (MRSI) and to evaluate their ability in detecting metabolic changes with mild injury.

MATERIALS AND METHODS

The implementation of a generalized autocalibrating partially parallel acquisition (GRAPPA) method for a high-resolution whole-brain echo planar SI (3D-EPSI) sequence is first described and the spectral accuracy of the GRAPPA-EPSI method is investigated using lobar and voxel-based analyses for normal subjects and patients with mild traumatic brain injuries (mTBI). The performance of GRAPPA was compared with that of fully encoded EPSI for five datasets collected from normal subjects at the same scanning session, as well as on 45 scans (20 normal subjects and 25 mTBI patients) for which the reduced k-space sampling was simulated. For comparison, a central k-space lower-resolution 3D-EPSI acquisition was also simulated. Differences in individual metabolites and metabolite ratio distributions of the mTBI group relative to those of age-matched control subjects were statistically evaluated using analyses divided into hemispheric brain lobes and tissue types.

RESULTS

GRAPPA-EPSI with 16-minute scan time yielded robust and similar results in terms of MRSI quantitation, spectral fitting, and accuracy with that of fully sampled 3D-EPSI acquisitions and was more accurate than central k-space acquisition. Primary findings included high correlations (accuracy of 92.6%) between the GRAPPA and fully sampled results.

CONCLUSION

Although the reduced encoding method is associated with lower signal-to-noise ratio (SNR) that impacts the quality of spectral analysis, the use of the parallel imaging method can lead to the same diagnostic outcomes as the fully sampled data when using the sensitivity-limited volumetric MRSI.

摘要

目的

评估加速采集对容积磁共振波谱成像(MRSI)谱质的影响,并评估其在检测轻度损伤时代谢变化的能力。

材料和方法

首先描述了一种高分辨率全脑回波平面 SI(3D-EPSI)序列的广义自校准部分并行采集(GRAPPA)方法的实现,并使用基于叶和体素的分析方法对正常受试者和轻度创伤性脑损伤(mTBI)患者进行研究,以评估 GRAPPA-EPSI 方法的光谱准确性。在相同的扫描会话中,将 GRAPPA 的性能与完全编码的 EPSI 进行了比较,比较了来自正常受试者的五个数据集,以及在模拟减少的 k 空间采样的 45 次扫描(20 名正常受试者和 25 名 mTBI 患者)上的性能。为了比较,还模拟了中央 k 空间低分辨率 3D-EPSI 采集。使用按半球脑叶和组织类型划分的分析方法,对 mTBI 组与年龄匹配的对照组个体代谢物和代谢物比分布的差异进行了统计学评估。

结果

GRAPPA-EPSI 以 16 分钟的扫描时间进行,在 MRSI 定量、光谱拟合和准确性方面与完全采样的 3D-EPSI 采集具有相似的结果,并且比中央 k 空间采集更准确。主要发现包括 GRAPPA 和完全采样结果之间具有很高的相关性(准确性为 92.6%)。

结论

尽管降低的编码方法与较低的信噪比(SNR)相关,会影响光谱分析的质量,但当使用灵敏度受限的容积 MRSI 时,并行成像方法的使用可以与完全采样数据产生相同的诊断结果。

相似文献

1
Impact of reduced k-space acquisition on pathologic detectability for volumetric MR spectroscopic imaging.
J Magn Reson Imaging. 2014 Jan;39(1):224-34. doi: 10.1002/jmri.24130. Epub 2013 Apr 4.
4
A silent echo-planar spectroscopic imaging readout with high spectral bandwidth MRSI using an ultrasonic gradient axis.
Magn Reson Med. 2024 Jun;91(6):2247-2256. doi: 10.1002/mrm.30008. Epub 2024 Jan 11.
6
Combining multiband slice selection with consistent k-t-space EPSI for accelerated spectral imaging.
Magn Reson Med. 2019 Sep;82(3):867-876. doi: 10.1002/mrm.27767. Epub 2019 Apr 16.
8
3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T.
Magn Reson Imaging. 2009 Nov;27(9):1249-57. doi: 10.1016/j.mri.2009.05.028. Epub 2009 Sep 19.
9
Improved spectral quality for 3D MR spectroscopic imaging using a high spatial resolution acquisition strategy.
Magn Reson Imaging. 2003 Feb;21(2):113-20. doi: 10.1016/s0730-725x(02)00645-8.

引用本文的文献

2
Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain.
Tomography. 2025 Jan 13;11(1):7. doi: 10.3390/tomography11010007.
3
Exploring in vivo human brain metabolism at 10.5 T: Initial insights from MR spectroscopic imaging.
Neuroimage. 2025 Feb 15;307:121015. doi: 10.1016/j.neuroimage.2025.121015. Epub 2025 Jan 9.
4
Magnetic Resonance Spectroscopy of Traumatic Brain Injury and Subconcussive Hits: A Systematic Review and Meta-Analysis.
J Neurotrauma. 2022 Nov;39(21-22):1455-1476. doi: 10.1089/neu.2022.0125. Epub 2022 Aug 16.
5
Emerging MR Imaging and Spectroscopic Methods to Study Brain Tumor Metabolism.
Front Neurol. 2022 Mar 16;13:789355. doi: 10.3389/fneur.2022.789355. eCollection 2022.
6
Whole-brain high-resolution metabolite mapping with 3D compressed-sensing SENSE low-rank H FID-MRSI.
NMR Biomed. 2022 Jan;35(1):e4615. doi: 10.1002/nbm.4615. Epub 2021 Oct 1.
7
Achieving high-resolution H-MRSI of the human brain with compressed-sensing and low-rank reconstruction at 7 Tesla.
J Magn Reson. 2021 Oct;331:107048. doi: 10.1016/j.jmr.2021.107048. Epub 2021 Aug 11.
8
Accelerated MR spectroscopic imaging-a review of current and emerging techniques.
NMR Biomed. 2021 May;34(5):e4314. doi: 10.1002/nbm.4314. Epub 2020 May 12.
9
Intra-session and inter-subject variability of 3D-FID-MRSI using single-echo volumetric EPI navigators at 3T.
Magn Reson Med. 2020 Jun;83(6):1920-1929. doi: 10.1002/mrm.28076. Epub 2019 Nov 13.

本文引用的文献

1
Neurologic 3D MR spectroscopic imaging with low-power adiabatic pulses and fast spiral acquisition.
Radiology. 2012 Feb;262(2):647-61. doi: 10.1148/radiol.11110277. Epub 2011 Dec 20.
3
3D sensitivity encoded ellipsoidal MR spectroscopic imaging of gliomas at 3T.
Magn Reson Imaging. 2009 Nov;27(9):1249-57. doi: 10.1016/j.mri.2009.05.028. Epub 2009 Sep 19.
8
Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.
Magn Reson Med. 2009 Mar;61(3):541-7. doi: 10.1002/mrm.21855.
10
Fast parallel spiral chemical shift imaging at 3T using iterative SENSE reconstruction.
Magn Reson Med. 2008 Apr;59(4):891-7. doi: 10.1002/mrm.21572.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验