文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

宽叶鲜卑花鲜花中 2-乙酰基-1-吡咯啉生物合成的机制。

Mechanism of 2-acetyl-1-pyrroline biosynthesis in Bassia latifolia Roxb. flowers.

机构信息

Department of Botany, University of Pune, Pune, 411007 India.

出版信息

Physiol Mol Biol Plants. 2011 Jul;17(3):231-7. doi: 10.1007/s12298-011-0075-5. Epub 2011 Jul 1.


DOI:10.1007/s12298-011-0075-5
PMID:23573014
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3550574/
Abstract

The flowers of Bassia latifolia are known to contain 2-acetyl-1-pyrroline (2AP), the compound responsible for pleasant aroma in basmati and other scented rice. Four growth stages of Bassia flowers were identified and 2AP contents were analysed in each stage. It was found that 2AP (3.30 ppm) gets synthesized only in fleshy corolla of mature flowers (fourth stage). The activity of γ-aminobutyraldehyde dehydrogenase (AADH); an enzyme responsible for synthesis of γ-aminobutyricacid (GABA) from γ-aminobutyraldehyde (GABald) was assessed in these four stages. The AADH activity was absent in the fourth stage. It was concluded that ceased activity of AADH in fourth stage flowers leads to the accumulation of γ-aminobutyraldehyde which is cyclised spontaneously to Δ(1)-pyrroline, the key precursor of 2AP. Δ(1)-pyrroline further reacts unenzymatically with methylglyoxal to form 2AP.

摘要

Bassia latifolia 的花朵中含有 2-乙酰-1-吡咯啉(2AP),这种化合物是长粒香米和其他香米产生香气的原因。本研究鉴定了 Bassia 花朵的四个生长阶段,并分析了每个阶段 2AP 的含量。结果发现,2AP(3.30ppm)仅在成熟花朵的肉质花冠(第四阶段)中合成。在这四个阶段中评估了负责将 γ-氨基丁酸醛(GABald)转化为 γ-氨基丁酸(GABA)的γ-氨基丁酸脱氢酶(AADH)的活性。第四阶段没有 AADH 活性。结论是第四阶段花朵中 AADH 的活性停止导致 γ-氨基丁酸醛的积累,该醛自发环化形成 2AP 的关键前体 Δ(1)-吡咯啉。Δ(1)-吡咯啉进一步与甲基乙二醛非酶促反应形成 2AP。

相似文献

[1]
Mechanism of 2-acetyl-1-pyrroline biosynthesis in Bassia latifolia Roxb. flowers.

Physiol Mol Biol Plants. 2011-7-1

[2]
Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars.

Rice (N Y). 2016-8-5

[3]
Comparative Characterization of Aroma Volatiles and Related Gene Expression Analysis at Vegetative and Mature Stages in Basmati and Non-Basmati Rice (Oryza sativa L.) Cultivars.

Appl Biochem Biotechnol. 2016-2

[4]
Co-functioning of 2AP precursor amino acids enhances 2-acetyl-1-pyrroline under salt stress in aromatic rice (Oryza sativa L.) cultivars.

Sci Rep. 2022-3-10

[5]
Combined Metabolomic and Quantitative RT-PCR Analyses Revealed the Synthetic Differences of 2-Acetyl-1-pyrroline in Aromatic and Non-Aromatic Vegetable Soybeans.

Int J Mol Sci. 2022-11-22

[6]
Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (Oryza sativa L.): a status review.

J Sci Food Agric. 2017-1

[7]
Application of γ-aminobutyric acid (GABA) and nitrogen regulates aroma biochemistry in fragrant rice.

Food Sci Nutr. 2019-10-22

[8]
Effect of Gamma Irradiation on 2-Acetyl-1-pyrroline Content, GABA Content and Volatile Compounds of Germinated Rice (Thai Upland Rice).

Plants (Basel). 2017-5-10

[9]
2-Acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) gene transformation.

Appl Biochem Biotechnol. 2015-12

[10]
Zinc supplementation and light intensity affect 2-acetyl-1-pyrroline (2AP) formation in fragrant rice.

BMC Plant Biol. 2023-4-11

引用本文的文献

[1]
Effects of variety degeneration on yield formation, quality traits and 2-acetyl-1-pyrroline biosynthesis in high-quality Japonica rice.

Rice (N Y). 2025-8-19

[2]
Evidence of polyamines mediated 2-acetyl-1-pyrroline biosynthesis in aromatic rice rhizospheric fungal species Aspergillus niger.

Braz J Microbiol. 2023-12

[3]
: A Review on the Phytochemical and Pharmacological Aspects.

Pharm Chem J. 2023

[4]
Dissecting the biochemical and molecular-genetic regulation of diverse metabolic pathways governing aroma formation in indigenous aromatic indica rice varieties.

Mol Biol Rep. 2023-3

[5]
Combined Metabolomic and Quantitative RT-PCR Analyses Revealed the Synthetic Differences of 2-Acetyl-1-pyrroline in Aromatic and Non-Aromatic Vegetable Soybeans.

Int J Mol Sci. 2022-11-22

[6]
A SNP of betaine aldehyde dehydrogenase (BADH) enhances an aroma (2-acetyl-1-pyrroline) in sponge gourd (Luffa cylindrica) and ridge gourd (Luffa acutangula).

Sci Rep. 2022-3-8

[7]
Nitrogen sources affected the biosynthesis of 2-acetyl-1-pyrroline, cooked rice elongation and amylose content in rice.

PLoS One. 2021

[8]
Fragrance in Roxb. Despite the Presence of a Betaine Aldehyde Dehydrogenase 2.

Int J Mol Sci. 2021-6-28

[9]
Application of CRISPR/Cas9 in Crop Quality Improvement.

Int J Mol Sci. 2021-4-19

[10]
RNAi-mediated down regulation of gene for expression of 2-acetyl-1-pyrroline in non-scented rice IR-64 ( L.).

3 Biotech. 2020-4

本文引用的文献

[1]
Aroma in rice: genetic analysis of a quantitative trait.

Theor Appl Genet. 1996-11

[2]
Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice.

Plant Mol Biol. 2008-11

[3]
Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with Delta1-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus.

J Agric Food Chem. 2008-8-27

[4]
Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance.

Plant Cell. 2008-7

[5]
Delta1-pyrroline-5-carboxylic acid formed by proline dehydrogenase from the Bacillus subtilis ssp. natto expressed in Escherichia coli as a precursor for 2-acetyl-1-pyrroline.

J Agric Food Chem. 2007-6-27

[6]
The gene for fragrance in rice.

Plant Biotechnol J. 2005-5

[7]
Inhibition of proline oxidation by water stress.

Plant Physiol. 1977-5

[8]
Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae.

Microbiol Res. 2007

[9]
Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress.

FEBS Lett. 2005-11-7

[10]
Protein measurement with the Folin phenol reagent.

J Biol Chem. 1951-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索