Small Systems Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292, USA.
Nanotechnology. 2013 May 10;24(18):185703. doi: 10.1088/0957-4484/24/18/185703. Epub 2013 Apr 10.
Our work introduces a class of stimuli-responsive expanding polymer composites with the ability to unidirectionally transform their physical dimensions, elastic modulus, density, and electrical resistance. Carbon nanotubes and core-shell acrylic microspheres were dispersed in polydimethylsiloxane, resulting in composites that exhibit a binary set of material properties. Upon thermal or infrared stimuli, the liquid cores encapsulated within the microspheres vaporize, expanding the surrounding shells and stretching the matrix. The microsphere expansion results in visible dimensional changes, regions of reduced polymeric chain mobility, nanotube tensioning, and overall elastic to plastic-like transformation of the composite. Here, we show composite transformations including macroscopic volume expansion (>500%), density reduction (>80%), and elastic modulus increase (>675%). Additionally, conductive nanotubes allow for remote expansion monitoring and exhibit distinct loading-dependent electrical responses. With the ability to pattern regions of tailorable expansion, strength, and electrical resistance into a single polymer skin, these composites present opportunities as structural and electrical building blocks in smart systems.
我们的工作引入了一类刺激响应型可扩展聚合物复合材料,它们具有单向改变其物理尺寸、弹性模量、密度和电阻的能力。碳纳米管和核壳丙烯酸微球分散在聚二甲基硅氧烷中,形成了具有双组分配方材料性能的复合材料。在热或红外刺激下,微球内包裹的液体芯蒸发,膨胀外壳并拉伸基质。微球的膨胀导致可见的尺寸变化、聚合物链流动性降低的区域、碳纳米管的张紧以及复合材料整体从弹性到塑性的转变。在这里,我们展示了包括宏观体积膨胀(>500%)、密度降低(>80%)和弹性模量增加(>675%)在内的复合材料转变。此外,导电碳纳米管允许进行远程扩展监测,并表现出明显的负载相关的电响应。通过将可定制扩展、强度和电阻的区域图案化到单个聚合物皮肤中,这些复合材料为智能系统中的结构和电气积木提供了机会。