Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
J Am Chem Soc. 2013 May 8;135(18):7053-63. doi: 10.1021/ja4024447. Epub 2013 Apr 23.
Glycosyltransferases (GTs) are responsible for the biosynthesis of glycans, the most abundant organic molecules in nature. Their biological relevance makes necessary the knowledge of their catalytic mechanism, which in the case of retaining GTs is still a matter of debate. After the initial proposal of a double-displacement mechanism with formation of a covalent glycosyl-enzyme intermediate (CGE), new experimental and computational data are pointing out to a front-side attack as a plausible alternative. The question is then why family GT6 members, like bovine α1,3-galactosyltransferase (α1,3-GalT), have a nucleophilic residue (Glu317) situated close to the anomeric carbon. To answer this and other questions, QM(DFT)/MM calculations on the entire α1,3-GalT:substrates system (and for the E317A/E317Q mutants) have been carried out. We describe a substrate-assisted mechanism for retaining GTs consisting of the stabilization of the developing negative charge on the β-phosphate by the hydrogen of the attacking hydroxyl group of the acceptor molecule. This interaction is impaired in the α1,3-GalT reactants, which explains why Glu317 is required to nucleophilically assist initial catalysis by "pushing" leaving-group departure. The presence of Glu317 opens the door to the possibility of a double-displacement mechanism in GT6 family. Our results suggest that in α1,3-GalT the substrate-assisted catalysis would be necessary in both mechanisms (for which we predict similar reaction rates), because the nucleophilic strength of Glu317 is reduced by the interactions it makes to ensure proper acceptor binding. Interestingly, the same effect would be found in the absence of the acceptor when Glu317 interacts with water molecules, which could explain the difficulties for isolating the CGE experimentally, and could be a strategy to avoid undesired hydrolysis of the donor substrate.
糖基转移酶(GTs)负责聚糖的生物合成,聚糖是自然界中最丰富的有机分子。由于其生物学重要性,人们必须了解其催化机制,而对于保留 GTs 的催化机制,目前仍存在争议。在最初提出形成共价糖基-酶中间体(CGE)的双置换机制之后,新的实验和计算数据表明,亲核进攻可能是一种可行的替代方案。那么,问题是为什么家族 GT6 成员,如牛α1,3-半乳糖基转移酶(α1,3-GalT),具有靠近糖苷碳原子的亲核残基(Glu317)。为了回答这个问题和其他问题,我们对整个α1,3-GalT:底物系统(以及 E317A/E317Q 突变体)进行了 QM(DFT)/MM 计算。我们描述了一种保留 GTs 的底物辅助催化机制,该机制包括通过受体分子攻击羟基的氢原子稳定β-磷酸上的带负电荷的基团。这种相互作用在α1,3-GalT 反应物中受到干扰,这解释了为什么 Glu317 需要通过“推动”离去基团的离去来亲核辅助初始催化。Glu317 的存在为 GT6 家族的双置换机制打开了可能性。我们的结果表明,在α1,3-GalT 中,两种机制都需要底物辅助催化(我们预测这两种机制的反应速率相似),因为 Glu317 的亲核强度因确保适当受体结合而降低。有趣的是,当 Glu317 与水分子相互作用时,即使没有受体,也会产生相同的效果,这可以解释为什么实验中难以分离 CGE,并且可能是避免供体底物不必要水解的一种策略。