INSERM U1028; CNRS UMR5292 Lyon Neuroscience Research Center, AniRA-Neurochem technological platform, team WAKING, Lyon, France.
ACS Chem Neurosci. 2013 May 15;4(5):772-81. doi: 10.1021/cn4000549. Epub 2013 Apr 12.
D-serine, a co-agonist of N-methyl D-aspartate (NMDA) receptors, has been implicated in neurological and psychiatric disorders such as cerebral ischemia, lateral amyotrophic sclerosis, or schizophrenia. D-serine signaling represents an important pharmacological target for treating these diseases; however, the biochemical mechanisms controlling extracellular D-serine levels in vivo are still unclear. D-serine heteroexchange through small neutral amino acid transporters has been shown in cell cultures and brain slices and could provide a biochemical mechanism for the control of D-serine extracellular concentration in vivo. Alternatively, exocytotic D-serine release has also been proposed. In this study, the dynamics of D-serine release and clearance were explored in vivo on a second-by-second time scale using microelectrode biosensors. The rate of D-serine clearance in the rat frontal cortex after a microionophoretic injection revealed a transporter-mediated uptake mechanism. D-serine uptake was blocked by small neutral l-amino acids, implicating alanine-serine-cysteine (ASC) transporters, in particular high affinity Asc-1 and low affinity ASCT2 transporters. Interestingly, changes in alanine, serine, or threonine levels resulted in D-serine release through ASC transporters. Asc-1, but not ASCT2, appeared to release D-serine in response to changes in amino acid concentrations. Finally, neuronal silencing by tetrodotoxin increased D-serine extracellular concentration by an ASC-transporter-dependent mechanism. Together, these results indicate that D-serine heteroexchange through ASC transporters is present in vivo and may constitute a key component in the regulation of D-serine extracellular concentration.
D-丝氨酸是 N-甲基-D-天冬氨酸(NMDA)受体的共激动剂,与脑缺血、侧索硬化症或精神分裂症等神经和精神疾病有关。D-丝氨酸信号代表了治疗这些疾病的重要药理学靶点;然而,控制体内细胞外 D-丝氨酸水平的生化机制仍不清楚。细胞培养物和脑片中已显示出 D-丝氨酸通过小中性氨基酸转运体的异交换,这可能为控制体内细胞外 D-丝氨酸浓度提供了生化机制。或者,也提出了 D-丝氨酸的胞吐释放。在这项研究中,使用微电极生物传感器在秒级时间尺度上在体内探索了 D-丝氨酸的释放和清除动力学。微电泳注射后大鼠额叶皮层中 D-丝氨酸清除率的变化揭示了一种转运体介导的摄取机制。小中性 l-氨基酸阻断了 D-丝氨酸摄取,这暗示了丙氨酸-丝氨酸-半胱氨酸(ASC)转运体,特别是高亲和力 Asc-1 和低亲和力 ASCT2 转运体的参与。有趣的是,丙氨酸、丝氨酸或苏氨酸水平的变化通过 ASC 转运体导致 D-丝氨酸释放。与氨基酸浓度变化相反,只有 Asc-1 而不是 ASCT2 似乎会释放 D-丝氨酸。最后,四氢生物蝶呤对神经元的沉默通过 ASC 转运体依赖性机制增加了细胞外 D-丝氨酸浓度。总之,这些结果表明,体内存在 ASC 转运体介导的 D-丝氨酸异交换,可能是调节细胞外 D-丝氨酸浓度的关键组成部分。