Laboratory of Cell and Gene Therapy, Centre for Basic Research II, Biomedical Research Foundation of the Academy of Athens BRFAA, Athens, Greece.
Virus Res. 2013 Jul;175(1):1-11. doi: 10.1016/j.virusres.2013.03.015. Epub 2013 Apr 11.
Gene therapy utilizing lentiviral vectors (LVs) constitutes a real therapeutic alternative for many inherited monogenic diseases. Therefore, the generation of functional vectors using fast, non-laborious and cost-effective strategies is imperative. Among the available concentration methods for VSV-G pseudotyped lentiviruses to achieve high therapeutic titers, ultracentrifugation represents the most common approach. However, the procedure requires special handling and access to special instrumentation, it is time-consuming, and most importantly, it is cost-ineffective due to the high maintenance expenses and consumables of the ultracentrifuge apparatus. Here we describe an improved protocol in which vector stocks are prepared by transient transfection using standard cell culture media and are then concentrated by ultrafiltration, resulting in functional vector titers of up to 6×10(9) transducing units per millilitre (TU/ml) without the involvement of any purification step. Although ultrafiltration per se for concentrating viruses is not a new procedure, our work displays one major novelty; we characterized the nature and the constituents of the viral batches produced by ultrafiltration using peptide mass fingerprint analysis. We also determined the viral functional titer by employing flow cytometry and evaluated the actual viral particle size and concentration in real time by using laser-based nanoparticle tracking analysis based on Brownian motion. Vectors generated by this production method are contained in intact virions and when tested to transduce in vitro either murine total bone marrow or human CD34(+) hematopoietic stem cells, resulted in equal transduction efficiency and reduced toxicity, compared to lentiviral vectors produced using standard ultracentrifugation-based methods. The data from this study can eventually lead to the improvement of protocols and technical modifications for the clinical trials for gene therapy.
利用慢病毒载体(LVs)的基因治疗为许多遗传性单基因疾病提供了一种真正的治疗选择。因此,使用快速、简单且经济高效的策略来生成功能性载体是至关重要的。在用于实现高治疗滴度的 VSV-G 假型慢病毒的现有浓缩方法中,超速离心是最常见的方法。然而,该程序需要特殊处理和专用仪器的访问,既耗时,而且最重要的是,由于超速离心机设备的高维护费用和耗材,成本效率不高。在这里,我们描述了一种改进的方案,其中使用标准细胞培养基通过瞬时转染制备载体库,然后通过超滤浓缩,得到高达 6×10(9)转导单位/毫升(TU/ml)的功能性载体滴度,而无需任何纯化步骤。虽然超滤本身用于浓缩病毒并不是一个新程序,但我们的工作显示了一个主要的新颖性;我们通过肽质量指纹分析对超滤产生的病毒批次的性质和成分进行了表征。我们还通过流式细胞术测定了病毒的功能滴度,并通过使用基于激光的纳米颗粒跟踪分析(基于布朗运动)实时评估实际病毒颗粒大小和浓度。通过这种生产方法产生的载体包含在完整的病毒粒子中,并且当在体外测试转导时,无论是鼠总骨髓还是人 CD34(+)造血干细胞,与使用标准超速离心法生产的慢病毒载体相比,都具有相同的转导效率和降低的毒性。这项研究的数据最终可以为基因治疗的临床试验的改进方案和技术修改提供依据。